20th Century Materials, Processes, Technologies

Photographic Process ID Webinar #2

Image Permanence Institute 2017-2018

James and Marjorie Carver Instant (Diffusion Transfer)

Resources

Web Resources

- Graphics Atlas
 - www.graphicsatlas.org
- George Eastman Museum Photographic Processes Series
 - YouTube
- Lingua Franca: A Common Language for Conservators of Photographic Materials
 iTunes App
- The Atlas of Analytical Signatures of Photographic Processes
 - www.getty.edu/conservation/publications_resources/pdf_publications/atlas.html

Print Resources

- Twentieth Century Color Photographs: Identification and Care by Silvie Penichon
- Photographs of the Past: Process and Preservation by Bertrand Lavedrine
- In the Darkroom: An Illustrated Guide to Photographic Processes Before the Digital Age by Sarah Kennel

What is a Photograph?

- An Image
 - Light Sensitivity of Chemical Compounds
 - Silver Salts
 - Chromium Salts
- A substrate

Salts (Chemistry): an ionic compound which is made up of two groups of oppositely charged ions (positive and negative)

Scanning electron microscope image of silver bromide crystals

19th C Processes into 20th C

- Collodion POP, 1885-1910
- Gelatin POP, 1885-1910
- Matte Collodion, 1895-1910
- Carbon, 1868-1940
- Gum Dichromate, 1894-1930s
- Cyanotype, 1842-1950
- Platinum, 1880-1930
- Gelatin Dry Plate, 1880-1925

Collodion POP

20th C Processes

- Silver Gelatin DOP, 1890-2000
- Screen Plate, 1907-1935
- Carbro, 1925-1950
- Dye Imbibition, 1945-1990
- Chromogenic, 1942-Present
- Instant (Diffusion Transfer), 1948-2008

Negative

A tonally reversed image on a transparent support.

- Glass plate
- Flexible strip film
- Sheet film

Black and White And Color

35mm negative on cellulose nitrtate support

Negative

All light sensitive materials exposed to light through a camera produce a negative image.

More light is reflecting off the light surfaces like the man's shirt exposing the light sensitive material creating darker hues.

Less light is reflecting off the dark surfaces, like the man's hair. Little to no material is exposed creating light hues.

Positive Transparency

A positive image on a transparent support

- Lantern slides
- 35 mm slides
- 4x5 or 8x10 transparencies

Black and White And Color

35mm chromogenic slide transparency

Print

A positive image on an opaque support

Silver Gelatin DOP

Photographic Printing

Contact print: The negative is placed in direct contact with the light sensitive paper.

The print is the same size as the negative.

Toned Silver Gelatin DOP Gelatin dry plate negative

Photographic Printing

Enlargement:

A small negative is placed in an enlarger, the image is projected onto light sensitive paper.

The negative is smaller than the print.

20th C Photographic Materials

Image Material

- Metal, Pigment, Dye Image Binder
- Gelatin
- Primary Support
- Paper, Glass, Plastic Support Coating*
- Baryta, Plastic Additives *
- To support, binder

*not always present

Image Formation

Silver Developing Out Process (DOP)

- Black and White, Color
 - Negatives
 - Prints
 - Positive
 - Transparencies

Developing Out (DOP): Overview

- Negatives, 1839-present; Prints, 1900-present
- Short exposure
- Latent image is formed (invisible)
- Silver halide reduced by chemical reaction to silver image particle
- Sensitive to blue, green, and red light after 1906
- Produces large image particles
- Black image colors

	-	TI	h	e	Ρ	e,	r	iC	C		С	T	a	b	le		
1 H																	2 He
3	4											10					
Li	Be											Ne					
11 Na	12 Mg											13 AI	14 Si	15 P	16 S	či	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	³⁴	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	⁵²	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	⁸⁶
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
		57 La	58 Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	⁶⁶ Dу	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

 $Ag^+ + Cl^-, Br^-, I^- = AgCl, AgBr, AgI$

The Electromagnetic Spectrum

$$Ag^{+}\begin{bmatrix} 0\\ \vdots\\ N\\ 0\end{bmatrix}^{-} + [Na]^{+} [Cl]^{-}_{(aq)} = AgCl_{(s)}$$

3D Model of AgBr

 $2D \ Model \ of \ AgBr$

Actual AgBr crystals

Illustration of AgBr crystals

Development

• Reduce exposed silver halides to silver image particle

Fix

• Break up unexposed silver halides

Wash

- Remove broken silver and halide ions
- Remove fix chemical

0	o	0	0	0	0	0
o	0	0	0	0	0	0
0	0	0	0	0	c//	
0	0	0	0	•		
0	0	0	0	0	1	
0	0	0	0	0	0	9
0	0	0	0	0	0	0

0	AG ⁺ ION
0	BR ⁻ ION
Θ	BR ATOM
•	SILVER ATOM

INTERSTITIAL SILVER ION

VVV PHOTON OF LIGHT

0 0 0 0 0 0 0

IMAGE PERMANENCE

WWW POTENTIAL LATENT - IMAGE SITE

During development, the exposed silver halide is chemically reduced to silver metal

FIRST STEPS IN EXPOSURE OF SILVER HALIDE CRYSTAL

FINAL STEPS IN EXPOSURE OF SILVER HALIDE CRYSTAL

Image material and formation influences image tone

Large, filamentary silver image particles = Black image tones

Calming Manatee

http://calmingmanatee.com/30

Materials: Silver Gelatin DOP

- Image: silver
- Binder: gelatin
- Support: paper
- Support coating: baryta or polyethylene

Untoned Silver Gelatin DOP

- Black image tone
- Continuous in tone

50x magnification

Continuous in Tone vs Patterned

Continuous in tone

Patterned

50x magnification

Toned Silver Gelatin DOP

- Sulfur Toning
 - Silver converted to silver sulfide
 - Brown image tones

- Selenium toning
 - Silver converted to silver selenide
 - Purple/red image tones

Toned Silver Gelatin DOP

Sulfide and Selenium toning

These prints were toned successively in the same toning bath containing a mix of polysulfide toner and selenium toner. The selenium slowly depleted resulting in stronger sulfide toning of the last prints.

Silver Image Deterioration

- Image fading
- Change in image tone
 - -brown, yellowbrown
 - Silver mirroring

Silver Gelatin DOP

Y

DW

WM-WH Cr

X

DW

R

DW

Cr

K

DW

WM-WH Cr

G

DW

KOD/

PAPE

EKTALU

Modifications:

- Image tone
- Base tints
- Surface Characteristics

KODAK POLYCONTRAST Rapid Paper RC F

	KODABROMIDE Paper A
	KODAK EKTALURE Paper E
	KODAK PORTRALURE Paper G
	Kodak Medalist Paper J
	KODAK EKTALURE Paper K
	KODAK PORTRALURE Paper M
	KODAK POLYCONTRAST Paper N
K RE R	KODAK Mural Paper R
.R	KODAK EKTALURE Paper X

MAGE

NENCE

Thickness of the baryta

Thin Baryta

Semi-Matte Sheen

Paper fibers visible 50x magnification

Matting agents

Textured 50x magnification

Matte Sheen

Applied texture

PI IMAGE PERMANENCE INSTITUTE

Surface sheen characteristics: Matte to Glossy

Silver Gelatin DOP

Modifications: Dyes

- Added to make paper brighter (OBAs)
- Added to binder, baryta, paper support to alter the color of the highlights

Imaged with daylight balanced lighting

Imaged with UV light

Color Photography

Color photography is an illusion

• The image is composed of additive or subtractive color elements, which the eye blends together to produce full color.

George Seurat, A Sunday on La Grande Jatte, 1884

Additive Color

Mixing Red, Green, Blue light = White

Viewed with transmitted light

Screen Plate: Autochrome

- Type: transparency
- Image: silver and dyed potato starch grains
- Binder: gelatin
- Support: glass or plastic
- Support coatings: varnishes

Screen Plate: Autochrome

- Transparency
- Patterned image structure
 - Random additive color dots (dyed potato starch)
- Glass or plastic support

Subtractive Color

Combining Cyan, Magenta, Yellow = Black

All other color processes

- Subtractive color
 - Cyan, magenta, yellow
 - Superimposed to produce full color

Color Assembly

Processes:

- Carbro
- Dye Imbibition

Carbro

Color Assembly

- Separation negatives
 - 3 silver gelatin DOP negatives
 - Each exposed through a red, green, or blue filter
 - Record of the red, green, blue light
- Subtractive Color
 - Separations used to print cyan, magenta, yellow images
- Assembly
 - 3 color images superimposed to produce full color image

Color Assebly

RED RECORD NEGATIVE

Carbro

- Separation negatives used to print 3 silver gelatin prints
- Dichromated gelatin sheets squeegeed in contact with prints
- Gelatin hardens where it is in contact with silver metal
- Unhardened areas remain soluble and are washed away

Carbro

- Type: print
- Image: pigment
- Binder: gelatin
- Support: paper
- Coatings: baryta
- Additives: matting agents

Carbro

- Differential gloss
- Pigment particles (continuous in tone)
- Misregistration

Pigment particles

50x Magnification

- Separation negatives printed onto printing matricies
 - Matrices: dichromated gelatin on plastic support
 - The gelatin hardens where it is exposed to light
 - Unhardened areas remain soluble and are washed away
- Matrices dyed, cyan, magenta, or yellow
- Dye is transferred to receiving paper

- Type: print
- Image: dye
- Binder: gelatin
- Support: paper
- Coating: baryta

- Misregistration
- Continuous in tone
- Diffuse image

Integral Tripack

• Processes:

- Chromogenic
- Silver Dye Bleach
- Instant Color (Dye diffusion transfer)
- Chemistry
 - Red, green, and blue light sensitive silver gelatin layers (separations) are superimposed on a single support.
 - Cyan, magenta, yellow dye is also in corresponding RGB layer

Chromogenic Image Formation

• exposed silver salts reduced to silver metal

Chromogenic Image Formation

- the dye couplers react with the oxidized developer
- dye couplers form dye clouds where silver is present

	•

Chromogenic Image Formation

• Silver chemically removed

	•				
۲					

Materials: Chromogenic

- Type: print, negative, positive transparency
- Image: dye
- Support: paper, plastic
- Binder: gelatin
- Coatings (prints): baryta, resin coated

Gelatin emulsions Dye image	Gelatin emu — Dye image	Ilsions Pigmented polye	thylene —
Cellulose acetate support			
	Polyethylene	Paper support	

Chromogenic

- Continuous in tone (10x)
- Image Grain (50x)
 - Dye clouds
- Backprint or Back stamp

Dye clouds

10x mag

Chromogenic

- Highlight yellowing
 - Color Shift
 - Fading

Silver Dye Bleach Image Formation

• exposed silver halide reduced to silver metal

Silver Dye Bleach Image Formation

- dye around silver is bleached
- Silver chemically removed

		•	•		●
•	•	(•	•	
\bullet	•	•	•		•

Materials: Silver Dye Bleach

- Type: print, positive transparency
- Image: dye
- Binder: gelatin
- Support: plastic, RC paper

Silver Dye Bleach

- Continuous in tone (10x)
- Image grain (50x)
 Bleach halos
- Black borders
- Plastic or RC support

50x magnification

Instant (Diffusion Transfer)

- Type: print
- Image: silver, dye
- Binder: synthetic polymer
- Support: paper, plastic

Diffusion Transfer & Dye Diffusion Transfer

- Continuous in tone
- Backprint
- Remnants of adhesive along borders

Instant (Internal Dye Diffusion Transfer)

- Continuous in tone
- White plastic frame with reagent pod
- Backprint

Survey & Thank You

Thank you!

- National Endowment for the Humanities Division of Preservation and Access
- The Andrew W. Mellon Foundation

Next Webinar

- Wednesday, November 8, 2:00pm EDT
- 21st Century Materials and Technologies

Survey!

• A brief survey will appear at the end, please give us feedback!

