19th Century Materials, Processes, Technologies

Photographic Process ID Webinar #1

Image Permanence Institute 2017-2018

Resources

Web Resources

- Graphics Atlas
 - www.graphicsatlas.org
- George Eastman Museum Photographic Processes Series
 - YouTube
- Lingua Franca: A Common Language for Conservators of Photographic Materials
 iTunes App
- The Atlas of Analytical Signatures of Photographic Processes
 - www.getty.edu/conservation/publications_resources/pdf_publications/atlas.html

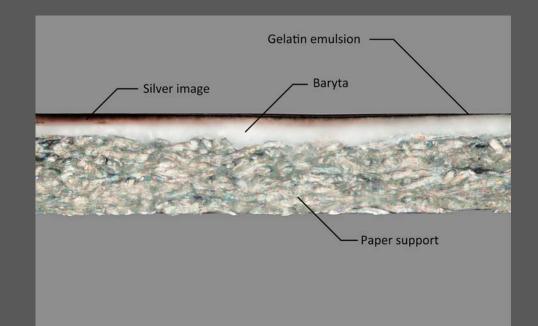
Print Resources

- Care and Identification of 19th Century Photographic Prints by James Reilly
- Photographs of the Past: Process and Preservation by Bertrand Lavedrine
- In the Darkroom: An Illustrated Guide to Photographic Processes Before the Digital Age by Sarah Kennel

What is a Photograph?

- An Image
 - Light Sensitivity of Chemical Compounds
 - Silver Salts
 - Iron Salts
 - Chromium Salts
- A substrate

Salts (Chemistry): an ionic compound which is made up of two groups of oppositely charged ions (positive and negative)


Chromium Salt: Potassium dichromate

Building Blocks of a Photograph

- Image Material
- Support
- Image Binder*
- Support Coating*

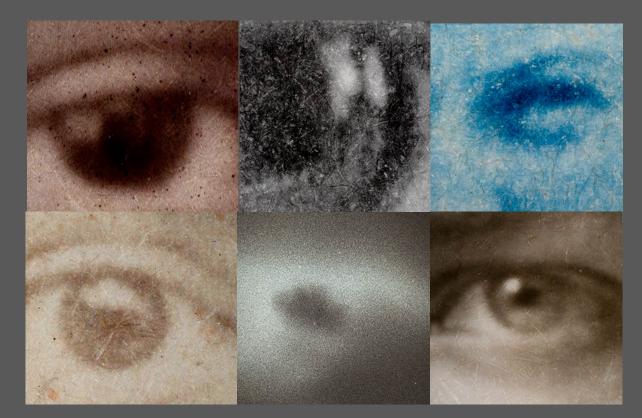

*not always present

Image Material

Metal
Silver
Gold
Platinum
Pigment

Supports

- Common
 - Paper
 - Metal
 - Glass
- Less common
 - Cloth
 - Ceramic
 - Leather

Image Binder

- Materials
 - Albumen
 - Collodion
 - Gelatin
- Purpose
 - To hold and suspend the image material above support
 - Sharper image
- Properties
 - Transparent
 - Ideal for suspensions
 - Each binder has specific properties

Albumen print

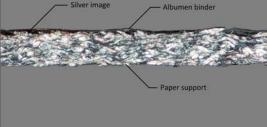
Support Coating

Baryta

- Materials
 - Barium sulfate and gelatin
- Purpose
 - Cover paper fibers
 - Smooth surface
 - Reduces light scattering
 - Higher surface sheen
 - Sharper image
 - Higher density in shadows
 - Improve binder adhesion

Gelatin POP

Building Blocks of Photographic Prints


One layer

Two layers

Three layers

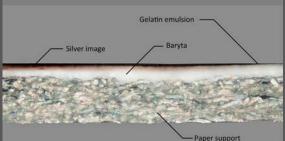


Image material Support

Image material in Binder Support

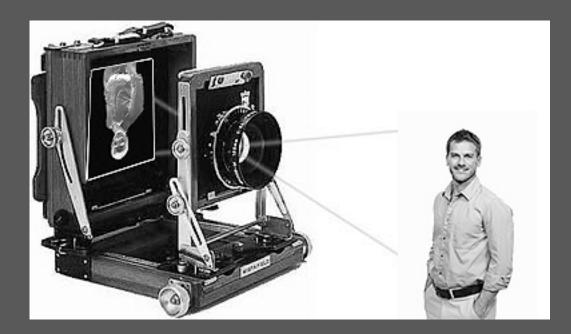
Image material in Binder Baryta Support

Types of Photographs

- Negative
- Print
- Positive Transparency
- Direct Positive

Negative

A tonally reversed image on a transparent support.



Negative

All light sensitive materials exposed to light through a camera produce a negative image.

More light is reflecting off the light surfaces like the man's shirt exposing the light sensitive material creating darker hues.

Less light is reflecting off the dark surfaces, like the man's hair. Little to no material is exposed creating light hues.

Print

A positive image on an opaque support

Positive Transparency

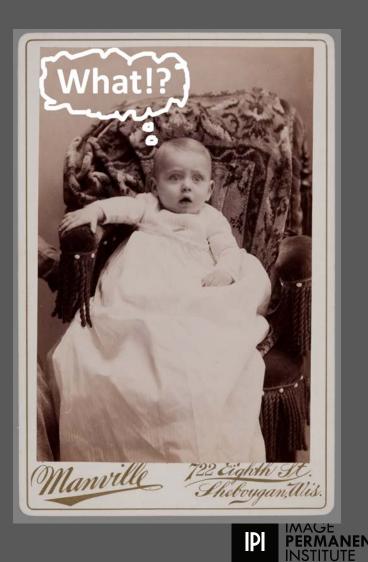
A positive image on a transparent support

Direct Positive

A positive images made directly in the camera.

• "Direct positive" images are technically negatives.

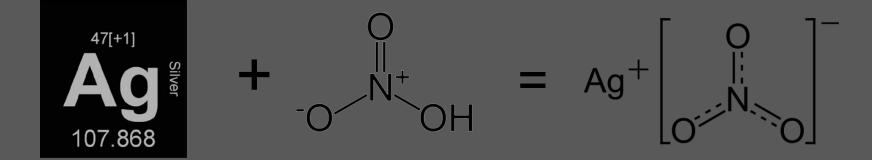
- Daguerreotypes
- Ambrotypes
- Tintypes



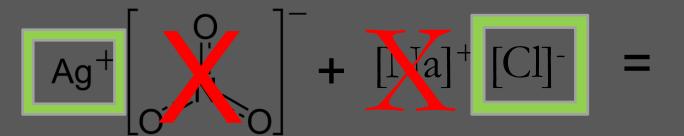
The Chemistry

- Silver Halide Chemistry
- Developing Out

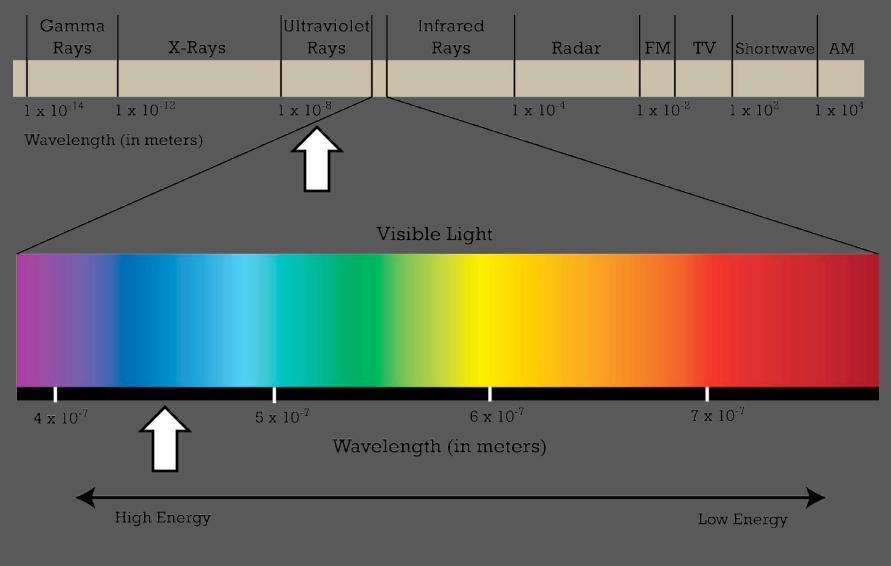
 Negatives
 Some Direct Positives
- Printing Out
 Prints


The Periodic Table																	
1 H																	2 He
3	4																10
Li	Be																Ne
11 Na	12 Mg							13 Al	14 Si	15 P	16 S	čí	18 Ar				
19	20	21	22	23	24	25	26	27	28	29	30	31	³²	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	⁵²	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87	88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
		57 La	⁵⁸ Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	⁶⁶ Dу	⁶⁷ Но	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

 $Ag^+ + Cl^-$, Br^- , $I^- = AgCl$, AgBr, AgI



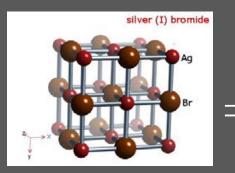
$$Ag^{+}\begin{bmatrix} 0\\ \vdots\\ N\\ 0\end{bmatrix}^{-} + [Na]^{+} [Cl]^{-}_{(aq)} = AgCl_{(s)}$$



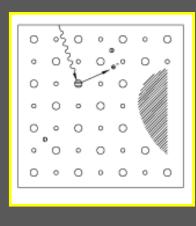
Silver Chloride

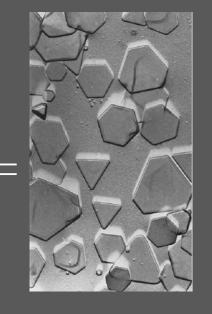
Silver Bromide

The Electromagnetic Spectrum


Developing Out (DOP)

- Negatives and some Direct Positives 1839-1880s
- Excess of halide
- Short exposure
- Latent image is formed (invisible)
- Reduced by chemical reaction to metal
- Produces large particles
- Creamy white highlights, black or brown shadows/midtones




Silver Halide Crystal

3D Model of AgBr

2D Model of AgBr

Actual AgBr crystals

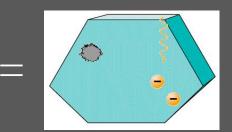
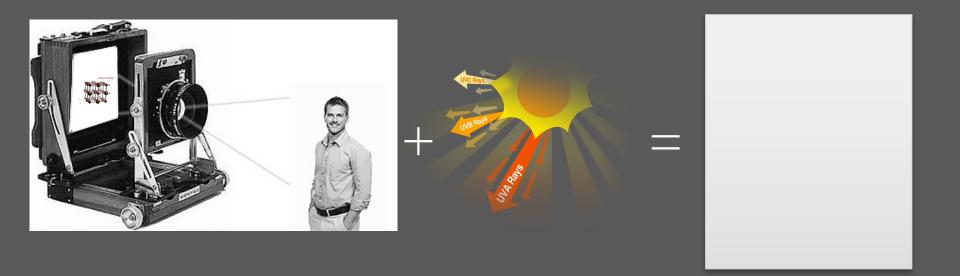


Illustration of AgBr crystals

Light sensitive silver salts are coated onto the substrate

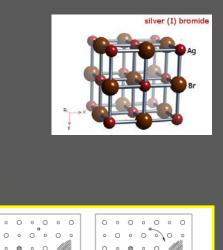
2AgBr (s)

Silver Bromide



2AgBr (s)

Silver Bromide

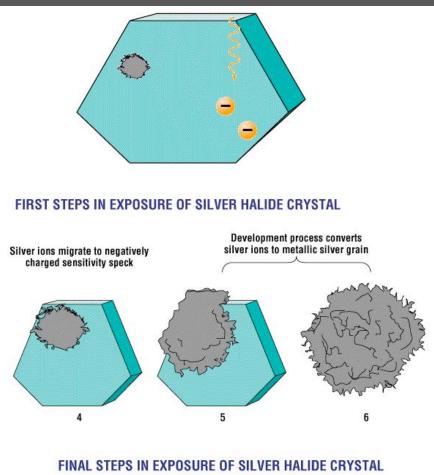

Latent image

Latent Image

- Light photons (energy) excite electrons, kicking them out of orbit.
- Electrons get trapped in a defect in the crystal lattice
- Free silver ions are attracted to the electrons and reduced to silver metal atoms. Four or more silver atoms create a latent image center.



	0	ò	0	0	0	0	ų.		0	ò	0	0	0	0	ų.			0	0	0	0	0	0	Q.	
	0	0	0	0	0	o	0		0	0	0	0	0	0	0			0	0	0	0	0	0	0	
								1								1									1
	0	0	0	0	0	0	0		0	0	0	2°	0	0	0			0	0	0	0	0	0	0	
	0	0	0	0	o	0	nin.		0	0	0	9	C	0	n.			0	0	0	0	0	0	nin.	
	0	0	0	D	0	A			0	0	0	0	0	Y				0	o	0	۰	0	.//		
	0	0	0	0	٥				•	0	0	0	D					0	0	°.	0	0	1	Ú.	
	۰,	°,	0	0	0	. 1			۰,	, °	0	0	0	N				۰,	Ľ	0	0	0	N		
	0	0	0	0	0	0	ų		0	0	0	0	0	0	×.			0	0	0	0	0	0	×.	
	0	0	0	0	0	o	0		0	0	0	0	0	0	0		L	0	0	0	0	0	0	0	
г								1								1		_	401	ION					
	0	0	0	0	0	o	0		0	0	0	0	0	0	0										
	0	0	0	0	0	0	î		0	0	0	0	0	0	ů.					ION					
	0	0	0	D	0				0	0	0	0	0	ell			(ATO					
	0	0	0	0	0	1			0	0	0	0	0	9				•	SILV	/ER /	ATON	I			
	0	0	0	D	0	1			0	0	0	0	0	ų			,	Ð	INTE	ERST	ITIA	LSIL	VER	ION	
	0	0	0	0	0	0	W.		0	0	٥	0	0	0	1		<i>'</i> ##	111.	РОТ	ENT	IAL L	ATE	NT -	MAG	E SITE
	0	0	0	D	0	0	0		0	0	0	0	0	o	0]	5	~	РНС	DTON	OFI	ligh	т		



Silver Image Development

- Developer is an electron source
- It provides the electrons needed to complete the reaction
- Silver ion reduces to metallic silver image grain.

Silver Image Development

During development, the exposed silver halide is chemically reduced to silver

Processes

- Calotype
- Paper negative

Туре

• Negative

Image

• Silver

Support

• Paper

Paper negative, 1840-1865

Edouard Denis Baldus Orange (Vaucluse) - Face sud, arc de triomphe en 1851 Paper Negative Musee D'Orsay

Process

• Wet plate collodion

Type

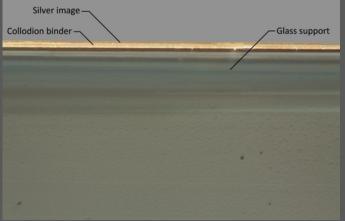
- Negative
- Positive Transparency

Image

• Silver

Supports

• Glass


Binder

Collodion

Wet Plate Collodion 1851-1885

Ambrotype, 1854-1865

Processes

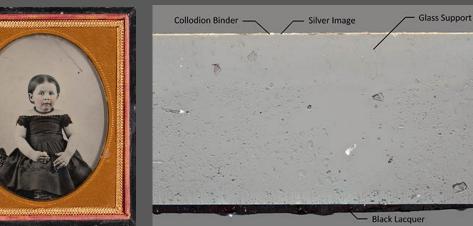
• Ambrotype, tintype

Type

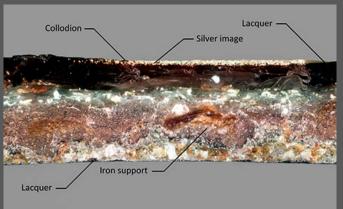
• Direct Positive

Image

• Silver


Supports

- Glass
- Metal


Binder

Collodion

Tintype 1856-1920

Process

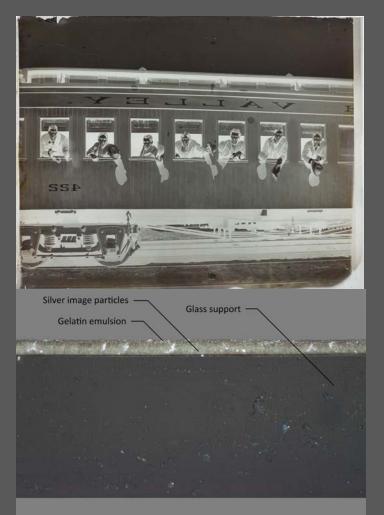
• Gelatin dry plate

Type

- Negative
- Positive transparency

Image

• Silver


Support

• Glass

Binder

• Gelatin

Gelatin Dry Plate, 1880-1925

Daguerreotype

Sensitize: Ag + Br, I = AgCl, AgBr, AgI

Develop: Mercury (Hg)

Daguerreotype

Type

Direct Positive

Image

- Silver
- Gold
- Mercury

Support

• Metal

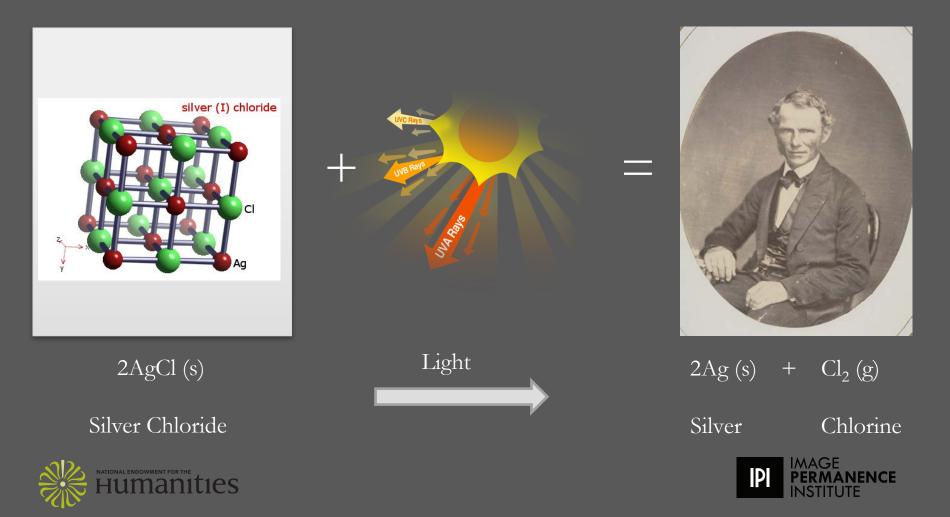
Daguerreotype, 1840-1860

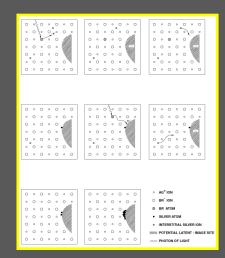
Print

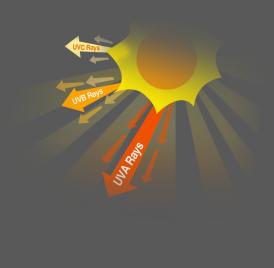
A positive image on an opaque support

Printing Out (POP)

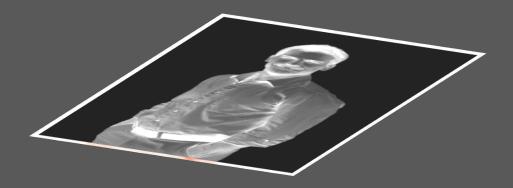
- Prints only, 1839-1900
- Excess of silver
- Silver salt reduced to silver by light alone
- Long exposure
- Small, round particles
- Toned with gold and/or platinum
- Warm image tone: Purple/Red


- Salted paper, 1840-1855
- Albumen, 1860-1895
- Collodion POP, 1885-1910
- Gelatin POP, 1885-1910
- Matte Collodion, 1895-1910

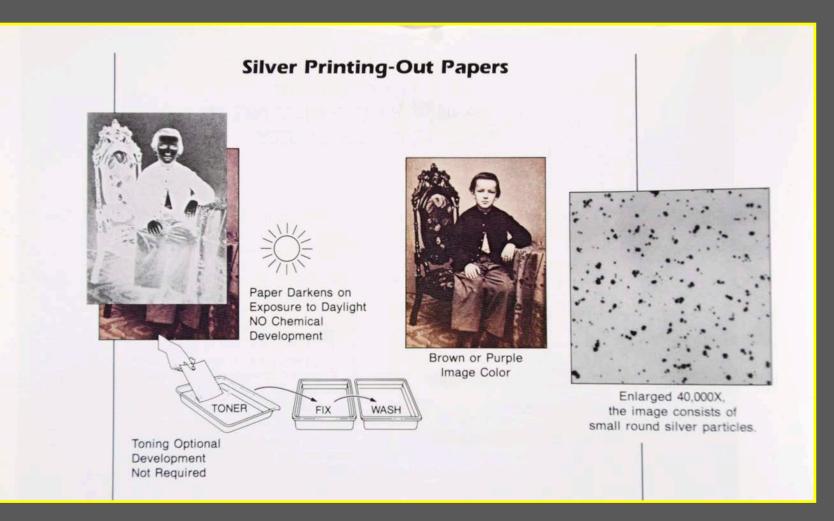




The paper is exposed to light. The exposed silver salts are reduced to silver by the action of sun (UV) light alone producing an image.



Contact Printed: negative is placed in direct contact with the sensitized paper



Gold toning

- Gold replaces some of the silver ullet
- Image tone depends on the length and strength of gold toning.
- Images range from red-purple to near neutral purple-black. \bullet

Salted Paper

Albumen

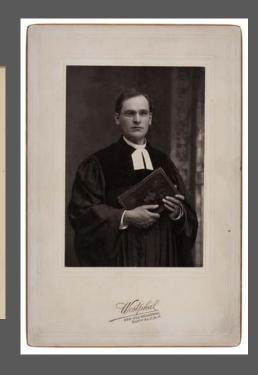


Image Material: gold and platinum toning

- Gold
 - Purplish tones
- Platinum
 - Brown tones
- Gold and platinum
 - Warm black tones

Matte Collodion

Image Deterioration

- Image fading
- Change in image tone
 brown, yellow, yellow-green

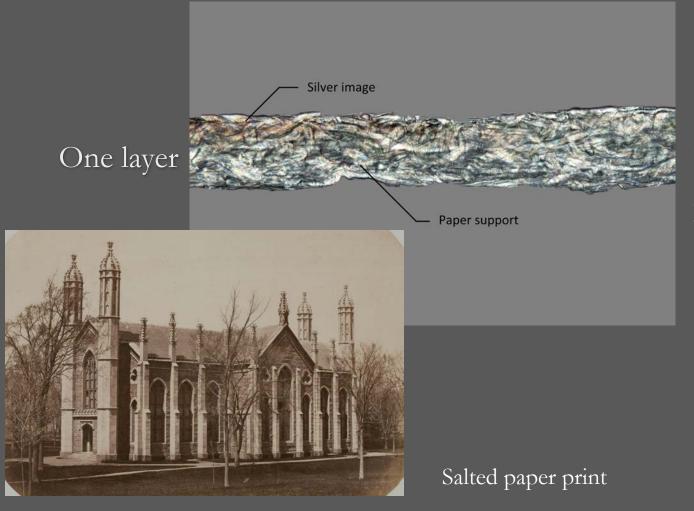
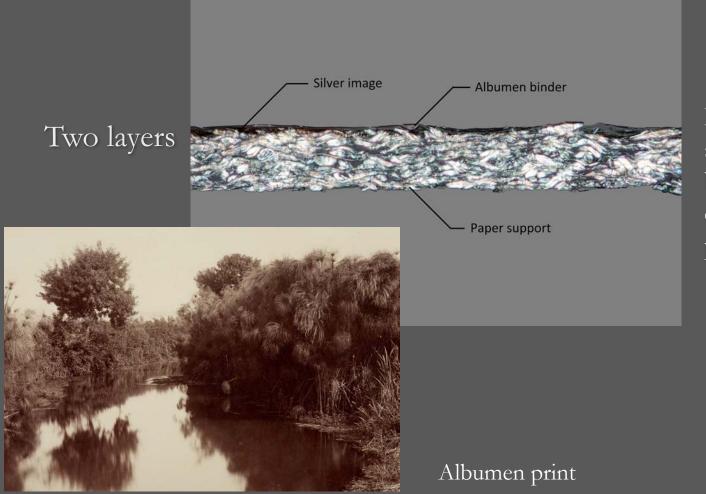



Image material forms directly in paper support

NATIONAL ENDOWMENT FOR THE Humanities

Image material suspended in a binder, binder coated onto paper support

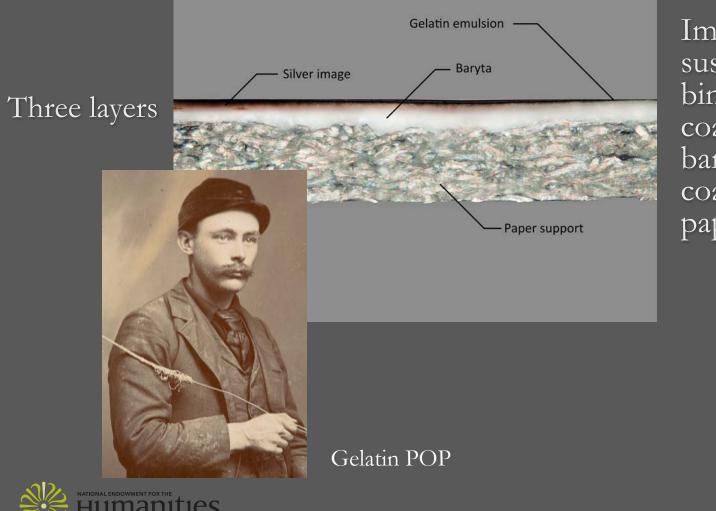


Image material suspended in a binder, binder coated onto baryta, baryta coated onto paper support

Each binder has specific properties

Albumen: yellow highlights

Collodion: iridescence

Gelatin: susceptible to image fade

One layer

Two layers

Three layers

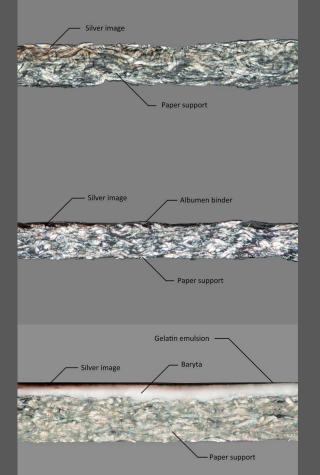
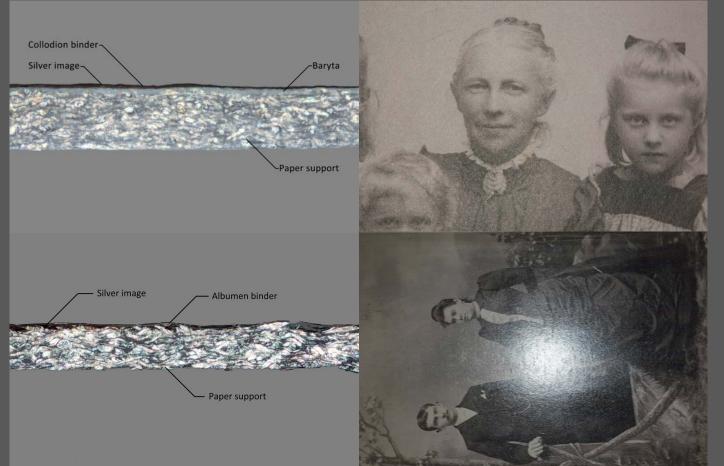


Image material forms directly in paper support

Image material suspended in a binder, binder coated onto paper support

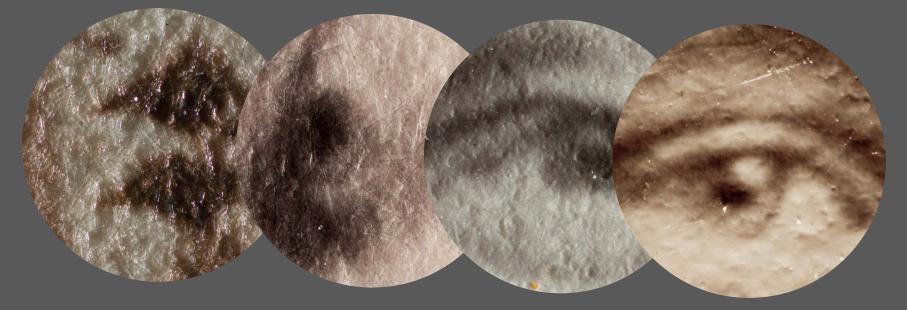
Bartya coated onto paper, image material suspended in binder on top of baryta

The surface characteristics (texture and sheen) are related to the layer structure of the print.


Salted paper

Albumen

Collodion and Gelatin POP


Matte collodion

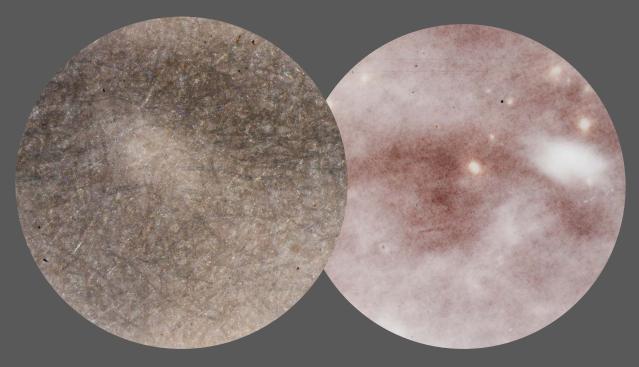
Albumen

Layer structure influences visibility of paper fibers and where the image rests in relation to the support

Salted paper

Albumen

Matte collodion


Gelatin POP

50x magnification, raking light

Image formation influences image structure

Continuous in tone

50x magnification

Salted Paper

Characteristics:

- Purple/red image tone
- Matte surface sheen
- Continuous in tone
- Image in paper fibers, paper fibers visible

NENCE

Albumen

- Purple/red image tone
- Semi-matte or glossy surface sheen
- Continuous in tone
- Image above paper fibers in binder, paper fibers visible

Collodion POP

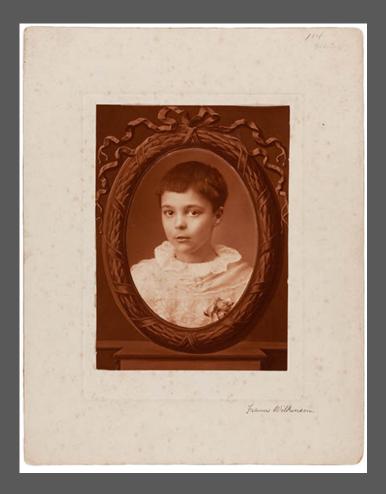
- Purple/red image tone
- Glossy surface sheen, iridescence (sometimes)
- Continuous in tone
- Image in binder, paper fibers obscured

Gelatin POP

- Purple/red image tone
- Glossy surface sheen
- Continuous in tone
- Image in binder, paper fibers obscured

Matte Collodion

- Purple/red; Brown; Black image tone
- Semi-matte surface sheen
- Continuous in tone
- Image above paper fibers in binder, paper fibers visible



Dichromated Colloid

- Carbon (1868-1940)
- Direct Carbon (1900-1939)
- Gum Dichromate (1894-1930s)

More info:

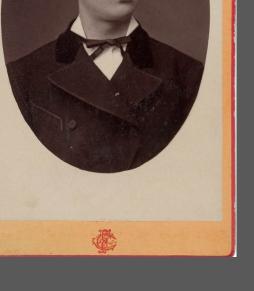
• www.graphicsatlas.org

- Dichromate (Cr₂O₇²⁻) + organic binder
 - Gelatin or gum arabic
- Contact printed
- The colloid hardens when exposed to light
- Unexposed areas remain soluble and are washed away

Carbon Print

Process

- Carbon
- Image Material
- Pigment


Binder

• Gelatin

Support

• Paper

Carbon Prints

- Differential Gloss
- Pigment particles (continuous in tone)

Pigment particle

Carbon Print

Iron

- Cyanotype, 1842-1950
- Platinum, 1880-1930

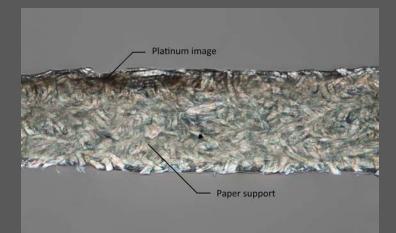
Cyanotype

Iron

Process: cyanotype

Support: paper

Image Material: Prussian blue (ferric ferrocyanide)



Iron

Process: platinum

Support: paper Image Material: platinum

Survey & Thank You

Thank you!

- National Endowment for the Humanities Division of Preservation and Access
- The Andrew W. Mellon Foundation

Next Webinar

- Wednesday, October 11, 2:00pm EDT
- 20th Century Materials and Technologies

Survey!

• A brief survey will appear at the end, please give us feedback!

