
Creating Depth Maps from

Monocular and Stereoscopic Images

By: Ben Bodner, Jessica Coulston

Advisor: Ricardo Figueroa

Revision Date: May 28, 2012

Submitted in partial fulfillment of the requirements for
the BS degree in the School of Film and Animation
Rochester Institute of Technology, Rochester, NY

Copyright, Ben Bodner and Jessica Coulston 2012

0.1 Abstract

The removal of certain portions of an image based on content is known as keying and is an impor-
tant component of most digital effects work in the Motion Picture Industry. The two algorithms
proposed here determine the depth of objects in an image, creating a channel with depth infor-
mation at every pixel that can be used to key out portions of the image based on their distance
from the camera. Keying from depth information reduces the amount of preparation necessary
for shooting as compared to traditional chroma keying and has a wider range of uses than luma
keying. The use of an accurate depth channel would also allow for insertion of computer generated
(CG) content into live action scenes without having to manually select what portions of the scene
should occlude the CG content. One algorithm produces depth channels from stereoscopic pairs
of images, captured by a dual-camera rig designed for shooting 3D movies, and the other uses sin-
gle monocular images. The monocular algorithm was ultimately unsuccessful because of problems
with the machine learning implementation but the method still retains merit for its simplicity. The
stereoscopic implementation found accurate depth in many cases and had several clear advantages
over chroma keying, but still had a lot of errors in depth estimation. The implementation has
significant room for improvement.

0.2 Introduction

The most common forms of keying are chroma keying, which removes pixels based on color, and
luma keying, which removes pixels based on luminance. Chroma keying typically requires the use of
a green screen background, along with a significant amount of lighting expertise and planning. The
use of chroma keying also limits available colors for foreground objects, in order to avoid unwanted
removal of object surfaces. Luma keying is limited to usage on very bright or very dark portions
of an image, and is typically used for sky replacement.

The goal of the project was to create depth maps from both two-dimensional (2D) and three-
dimensional (3D) captured images for the purpose of depth keying. Depth keying, unlike chroma
keying, allows the user to capture an image anywhere, not just in front of a green screen, which
makes lighting and set composition much less limited. It also has the possibility of eliminating
common problems like fringing and spill.

This paper includes a detailed analysis and discussion of implementation of one approach to
depth map creation for both 2D and 3D. Many available methods were assessed and the most
promising for each capture type were chosen for implementation. The depth keys have been assessed
based on the accuracy of depth information and quality of key as compared to light detection and
ranging (LIDAR).

0.3 Background

A significant amount of research and documentation exists on creating depth maps from stereo
image pairs. The process typically involves identifying matching pixels between the two images
and using their disparity in combination with the cameras’ orientations to find depth. It is also
necessary to determine which regions of one image do not have a matching region in the other
image, due to the differing perspectives of the cameras, and determine how to interpolate depth
information in these areas.

1

Most methods of creating depth maps from single 2D images rely on auxiliary devices to either
determine depth independent from the camera or to add information to the scene to be used to
help determine depth after image processing. For instance, one method analyzes the frequency of
a uniform static stripe pattern projected onto a scene to create a depth map.

The monocular method discussed here is ideal because it does not require an auxiliary device,
and relies on traditional monocular image capture alone. This method analyzes variations in tex-
ture across the image and how those textures are affected by scaling along with comparison of other
features in the image.

0.4 Theory and Method

0.4.1 Depth Maps from Stereoscopic Capture

To create a depth map from a stereoscopic image pair, each pixel in one image must be matched to
the corresponding pixel in the other image. Each point in the scene should have a corresponding
pixel from both cameras, except in cases where a pixel has imaged scene content that is occluded
in the other image. Because the two cameras used to record the scene were arranged horizontally,
corresponding pixels will only differ in location horizontally and not vertically, limiting the search
for a matching pixel to a single line of pixels in the image, called a scan line.

To search for the corresponding pixels from both cameras, an area of pixels, called an image
block, is centered on the pixel under scrutiny in the first image and then compared to image
blocks in the second image. The comparison is done using the luminance version of the images,
and cross-correlating image blocks along the same scan line. The horizontal distance between two
image blocks with high correlation is the disparity between the two blocks. When looking at the
correlations between one block in the first image and the blocks on the same scan line in the second
image, there will likely be multiple cases of high correlation. To narrow down which correlation
actually represents matching image blocks, it must be considered that objects have low variations
in disparity across their surface, but large changes in disparity at their edges. Neighboring blocks
in the first image should, in most cases, represent different portions of the same object in the scene,
and thus neighbors should have approximately the same disparity, determined by their horizontal
distance from highly correlated blocks in the second image. So while one block in the first image
may have a high correlation with multiple blocks in the second image and thus more than one
probable disparity value, all neighboring blocks representing the same object should have one
probable disparity value in common.

Figure 1 shows how the disparity of continuous objects can be identified, with the horizontal axis
representing horizontal image block location in the first image and the vertical axis representing the
disparity (the horizontal distance to the image block in the second image), with bright areas having
high correlation between the two image blocks. Although every single block from the first image
has a high correlation to multiple blocks in the second image, bright horizontal lines form on the
graph where there is a common probable disparity between neighbors, representing a continuous
object in the scene [1].

2

Figure 1: Correlation map showing horizontal image block location versus disparity [1].

To create dense depth maps, more than just an approximate disparity for each object is neces-
sary. Specifically for depth keying, accurate edge locations are necessary. To further determine a
more accurate depth at each pixel, candidate pairs of pixels from the same object are determined
from the correlation data found in the previous step. A cost function is employed to determine
which candidate is actually a matching pixel, most importantly at object edges, and which pixels
have no matching candidate because they represented an occluded portion of the image [2].

A cost is assigned to each possible disparity at every pixel location on the scan line, so every
point in the correlation map shown in Figure 1 has a cost. Each point in the leftmost column of the
correlation map is assigned a cost, Cmatch, which is dependent on the normalized cross-correlation
at the point. In each of the remaining columns, cost is determined for each point dependenting
on the costs in the preceding columns. For each point, a series of possible costs is generated, with
one possible cost for every point in the preceding column, and the minimum cost is assigned to
the current point. In other words, all possible disparity values at the previous pixel location are
considered and the one with the lowest cost is chosen.

If a point in the preceding column has a lower disparity than the point that is currently be-
ing assigned a cost, that point in the preceding column is not considered. Instead, a point several
columns to the left is considered, with exact column location determined by the change in disparity.
This is because a disparity increase, a change from an object in the background to an object in the
foreground, will correspond with pixels in the right image that are occluded in the left image. The
exact number of pixels occluded is equivalent to the change in disparity. Figure 2 shows how the
series of possible costs is determined.

3

Figure 2: Computation of the cost map [1].

As shown in Figure 2, a possible cost for a current point is the sum of the cost at the preceding
point, Cmatch at the preceding point, and a penalty dependent on the change in disparity between
the preceding point and the current point. Equations 1 through 5, below, show different ways the
penalty term is determined, dependent on the change in disparity.

∆d = 0 ⇒ Cpenalty = 0 (1)

∆d = ±1 ⇒ Cpenalty = Cinclination = ln

(
Pboundary

1− Pboundary
· 1√

2πσ2n

)
(2)

−∞ < ∆d < −1 ⇒ Cpenalty = Cdiscontinuity = a · Cinclination (3)

+1 < ∆d < +∞ ⇒ Cpenalty = Cdiscontinuity + ∆d · Cocclusion (4)

Cocclusion = b · Cinclination (5)

The variable Pboundary in equation 2 is a value between .95 and .98 that depends on the number
of object boundaries in the image. Variables a and b in equations 3 and 5 have an optimal value
depending on the content of the image. Ideally, a user would be able to view different depth map
outputs with varying values of Pboundary, a, and b and then chose the best option. However, for
this algorithm, a set of average optimal values were determined to be Pboundary = .98, a = 6, and
b = 8.

When a minimum cost is chosen from the series of possible costs, the coordinates of the preceding

4

point that was used in determining the cost are stored at the current point, along with the minimum
cost that was chosen. When costs have been determined for all points in the correlation map, a
candidate from each column is determined to be the correct disparity, so that every pixel location is
assigned a disparity value. First, the point with the lowest cost in the last column of the correlation
map is assigned as the disparity value for the rightmost pixel, and the location that was stored
at that cost is used to find the correct disparity in the second to last column. From there, the
location stored at each disparity chosen is used to find the preceding correct disparity. This way, a
disparity value is determined for every pixel location in the line, except where there was an increase
in disparity and a corresponding occlusion.

The process of finding a correlation map for a row of pixels and then determining the correct
disparities from that map using the cost function is repeated for every row in the image, so that a
disparity value is found for every pixel except where there is an occlusion. Along with the gaps in
disparity due to occlusion, the resulting disparity map has other inaccuracies. Foreground objects
are expanded in all directions an amount dependent on the block size used in finding normalized
cross-correlation. Errors in determining correct disparity with the cost function can lead to false
changes in disparity. To correct for these issues, the disparity map is compared with the luminance
map of the original image. Edge detection is used to find an edge map of both the disparity and
luminance images. A line is drawn from each point in the disparity edge map to its nearest neighbor
in the luminance edge map. If that line is shorter than a maximum distance dependent on the block
size used to find the correlation map, all pixels in the disparity map along that line are changed to
a value equal to the disparity, on the side of the disparity edge opposite the nearest neighbor.

This disparity correction has the effect of shrinking foreground objects to their proper size and
replacing disparity gaps at occlusions, because disparity edges will be located outside luminance
edges, and all values between the edges will be changed to the disparity of the background object.
Figure 3 shows the correction process, where ‘a’ is a point on the disparity edge map and ‘b’ is its
nearest neighbor in the luminance edge map. All pixels on the line between them in the disparity
image are changed to the disparity value at the pixel adjacent to ‘a’ in the direction opposite of
the line.

5

Figure 3: Process of disparity correction.

Once corresponding pixel locations have been identified between the stereoscopic image pair, the
depth of the point in the scene represented by each pair of pixels can be determined geometrically
using the disparity between corresponding pixels and the relative orientation and position of the
cameras. Figure 4 shows the components necessary to determine depth. C is the optical center of
the camera. A is a unit vector in the direction of the optical axis of the camera. H and V are unit
vectors in the direction of the horizontal and vertical components of the image plane, respectively.
f is the focal length of the cameras, so −f ∗A is a vector from C to the center of the image plane
[3].

6

Figure 4: Geometry involved in determining depth from a pair of corresponding pixel locations [3].

PS is a point in space and P is the projection of PS onto the image plane, relative to the center
of the image plane. Hence, P1 and P2 are the corresponding pixel locations previously determined
by the algorithm (although adjusted so they are relative to the center of the image plane instead
of the bottom-left corner). I1 and I2 are the pixel locations relative to the origin, and can be
determined with equation 6:

I = C + (−f ∗A) + Ph ∗H ′ + Pv ∗ V ′ (6)

To simplify the problem, C1 can be made the origin of the coordinate system, so A1 is a unit
vector along the z-axis, H ′1 is a unit vector along the x-axis, and V 1 is a unit vector along the
negative y-axis. C2, A2, H2 can be easily determined if the user supplies the focal length and the
distance, d, between the two cameras and angle, Φ, between A2 and A1:

7

C2 = [d, 0, 0] (7)

A2 = [cos(π/2 + Φ), 0, sin(π/2 + Φ)] (8)

H2 = [sin(π/2 + Φ), 0,− cos(π/2 + Φ)] (9)

V2 = V1 = [0,−1, 0] (10)

To find the point in space projected onto P1 and P2, the location of minimal distance between
the line L1, which passes through I1 and C1, and the line L2, which passes through I2 and C2,
must be determined. In a perfect situation where I1 and I2 where found along a continuous image
plane, PS would be the location where these two lines cross. However, I1 and I2 must be in the
center of a pixel, and so L1 and L2 likely will not cross. The location of minimal distance exists
where a vector W from a point on L1 to a point L2 is perpendicular to both lines[4]. The distance,
sc, from C1 to the point where W and L1 intersect can be found using equation 12 where:

u = P1− C1

v = P2− C2

w0 = C1− C2

therefore:

a = u · u
b = u · v
c = v · v
d = u · w0

e = v · w0

and:

sc = (b ∗ e− c ∗ d)/(a ∗ c− b2) (11)

With all the substitutions made, equation 11 is equivalent to equation 12 below.

s =

(
(P1 − C1) · (P2 − C2)

)
∗
(

(P2 − C2) · (C1 − C2)
)
−
(

(P2 − C2) · (P2 − C2)
)
∗
(

(P1 − C1) · (C1 − C2)
)

(
(P1 − C1) · (P1 − C1)

)
∗
(

(P2 − C2) · (P2 − C2)
)
−
(

(P1 − C1) · (P2 − C2)
)2

(12)
The point where W and L1 intersect, which is the approximate location of PS , can then be

determined:

PS = C1 + s ∗ (C1 − P1) (13)

The depth at pixel locations can now be found wherever a matching pixel was found. Depth
where there was no disparity information must be interpolated based on disparity values at neigh-
boring pixels.

8

0.4.2 Depth Maps from Monocular Capture

The method of depth analysis implemented here was created by Ashutosh Saxena, Sung H. Chung,
and Andrew Y. Ng [5]. Using a single monocular image, 15 filters, a probabilistic model, and
machine learning, the team was able to extract fairly accurate relative depth information.

Features for Absolute Depth

The method implemented here for gathering depth information from a single monocular image
makes use of nine Laws’s masks and six edge detection filters. The Laws’s masks were presented
by Kenneth Ivan Laws in 1979 and 1980. They are constructed from three basic 1x3 masks:

L3 =
[
1 2 1

]
(14)

E3 =
[
−1 0 1

]
(15)

S3 =
[
−1 2 −1

]
(16)

The letters at the beginning of these three masks stand for Local averaging, Edge detection,
and Spot detection. By convolving the three masks together in every combination, the nine 3x3
Laws’s masks are generated:

L3TL3
1 2 1
2 4 2
1 2 1

L3TE3
−1 0 1
−2 0 2
−1 0 1

L3TS3
−1 2 −1
−2 4 −2
−1 2 −1

E3TL3
−1 −2 −1

0 0 0
1 2 1

E3TE3
1 0 −1
0 0 0
−1 0 1

E3TS3
1 −2 1
0 0 0
−1 2 −1

S3TL3
−1 −2 −1

2 4 2
−1 −2 −1

S3TE3
1 0 −1
−2 0 2

1 0 −1

S3TS3
1 −2 1
−2 4 −2

1 −2 1

Figure 5: Laws’s Masks shown numerically [6]. Figure 6: Laws’s Masks shown pictorially [5].

All input images are represented in the YCbCr space. Formatted this way, the intensity channel,
Y, holds most of the images’ texture information, while the color channels, Cb and Cr, hold the low
frequency information like haze. Haze refers to atmospheric light scattering, which is a monocular
cue that humans rely on. The first Laws’s mask, L3TL3, acts as a local averaging filter and is
applied to the color channels. The entire set of Laws’s masks are used on the intensity channel.

The last six filters are simply oriented edge detectors at increments of 30◦ as shown in Figure
7. The intensity channel is convolved with each of the six edge detection filters. Usually edge

9

detection is done with a set of four or eight filters operating at 45◦ as in Sobel and Prewitt. Having
six filters at 30◦, however, reduces the redundancy of eight filters, while still improving on just four.

Figure 7: Six edge detecting kernels oriented at 30◦ [5].

The product of the intensity channel convolved with the nine Laws’s masks, the two chroma
channels convolved with the first Laws’s mask (local averaging filter), and the intensity channel
convolved with the six edge detecting kernels creates 17 output dimensions (Fn). Using equation
17, where k = {1, 2}, the sum absolute energy and sum squared energy respectively can be found
by convolving the 17 output dimensions (Fn) with the original image, (I) . This creates the first
34 dimensions of the feature vector for each pixel.

Ei(n) = Σ(x,y)∈patch(i)|I(x, y) ∗ Fn(x, y)|k (17)

To capture larger, more global features, three scales, or image resolutions are created. The first
scale exists at the pixel level and is represented in Figure 8 by the blue squares. The second scale,
represented in Figure 8 in red, is produced by averaging the center blue pixel and its four adjacent
blue pixels. Similarly, the third scale, represented in purple, is produced by averaging the center red
patch from scale two and its four red adjacent patches. Just as equation 17 was used on each patch
in the original image(I) to create the first 34 dimensions of each patch’s feature vector, equation
17 is also used on each neighboring patch, at each scale. The surrounding patches’ features are
made a part of the center patch’s feature vector, creating a total of 510 dimensions of information
at each pixel.

10

Figure 8: Scale 1 is blue, scale 2 is red, and scale 3 is purple.

Figure 9: Illustration of scale creation and column features [5].

A vertical feature vector, computed from the pixels in the column of the center pixel, is also
factored in to account for the very vertical structure of objects in the world (trees, buildings,
furniture, people). The column that the center pixel resides in is divided into four sections, as seen
in Figure 9, and the pixels in each quarter are averaged. Then, using equation 17, the 34 features
for each quarter of the column are also included in the center pixel’s feature vector. This adds an
additional 136 dimensions to the 510 current dimensions, resulting in 646 dimensions of absolute
depth information.

11

Features for Realitive Depth

The features for relative depth are employed to help learn the dependancies between depths at
neighboring patches. At the largest scale, shown in Figure 8 in purple, each patch is nine pixels
high by nine pixels across. For each of the 17 output images, (Fn), the patches at scale three are
analyzed. Each patch is composed of 25 scale one pixels. A histogram of the code values present
in the patch and a histogram of the code values present in the adjacent patch are created. The
histograms for the 17 output images are quantized to 10 bins and then adjacent patch’s histograms
are subtracted, creating 170 features for relative depth. Figure 10 shows pictorially the process for
creating features for relative depth.

Figure 10: Relative feature acquisition, done at scale three on 10 bin quantized histograms [5].

Probabilistic Model

Two types of probabilistic models, Laplacian and Gaussian, are applicable for this implementation.
Figure 11 shows the types of curves generated by each model. Both types can be used to successfully
create a depth map but the Gaussian gives a less exact result. The difference in profile of the two
curves illustrates the success rate. The Gaussian has a rounded profile, while the Laplacian comes
to a sharp point. When calculating the probability for a particular pixel’s depth, many positions
along the top of a Gaussian curve have a fairly high probability, but only a few points at the
Laplacian’s peak will have a high probability.

12

(a) Laplacian Probability Density Function (b) Gaussian Probability Density Function

Figure 11: Comparison of probability density curves after various manipulations.

The equation for a Gaussian curve is shown in equation 18.

f(x|µ, σ2) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(18)

The equation for a Laplacian curve is shown in equation 19

f(x|µ, b) =
1

2b
exp

(
−|x− µ|

b

)
(19)

The Laplacian equation for modeling depth is shown in equation 20. It has the same basic form
as equation 19 but computes one large summation from the product of many Laplacian curves.
Equation 20 that was chosen for the depth estimation purposes here.

P (d|X; θ, λ) =
1

Z
exp

− M∑
i=1

|di(1)− xTi θr|
λ1r

−
3∑

s=1

M∑
i=1

∑
j∈Ns(i)

|di(s)− dj(s)|
λ2rs

 (20)

Figure 12 shows the published results of the monocular depth map algorithm. The difference
between Gaussian and Laplacian estimations are clearly visible in column three and four. The crisp
point of the Laplacian curve results in sharper edges as well as more accurate, uniform objects.
The Gaussian gives a fair approximation of the scene but is outshone by the Laplacian results.

13

Figure 12: Depth map results from monocular images [5].

0.4.3 LIDAR

Light detection and ranging (LIDAR), is a laser scanning sensor designed to collect thousands of
x, y, z positions during a single scan. LIDAR works by emitting a light pulse and times how long
it takes for the pulse to return. Once the laser pulse hits an object it is reflected back towards the
scanner. The speed of light along with the time interval can be used to determine the position of the
object that the laser reflected from. The Digital Imaging and Remote Sensing(DIRS) laboratory at
Rochester Institute of Technology owns a SICK-LMS 151 ground-based LIDAR system. The system
has a maximum field of view of 270◦, an angular step width resolution of 0.25◦, and a scanning
range of 50 meters. It has the capability of measuring two pulse returns, but only distance to first
return was pertinent for this application. Figure 13 depicts the way the laser beam is emitted from
the SICK LMS-151 system. The scanner emits a single laser beam, shown in Figure 0.4.3, that is
reflected internally by a mirror to trace a 270◦ arc, shown in Figure 0.4.3. The base of the scanner
can rotate 180◦, allowing the laser beam to send out pulses in almost a full sphere, as seen in Figure
0.4.3. The system is restricted to a 270◦ field of view by its own base and physical presence.

14

(a) Side View (b) Front View (c) Full field of view

Figure 13: Diagram of the SICK LMS-151 system’s field of view.

The DIRS group outfitted the scanner for mobile field work. They included a level on the
rotating base for easy use outdoors in variable terrain. The rotating base is controlled by an iPod
touch application written by the group. The app allows the user to select the desired field of view
and begin the scanner’s laser emission. The SICK scanner is connected via ethernet to a self-
contained computer accessible by its own wifi hotspot. The computer, rotating base, and scanner
are powered by a portable rechargeable power source, which in the case of the DIRS group is a car
battery. Figure 14 shows pictures taken by the DIRS group of the scanner set up in the lab, and
in the field.

(a) System head (b) System head with cabling (c) System in the field

Figure 14: Operational pictures of the SICK LMS-151 system.

0.5 Results

The stereoscopic algorithm, and its testing, was limited by processing speed. The implementation
of the algorithm took about eight minutes to process a single stereoscopic pair of images with
a resolution of 350 x 600 pixels and produce a depth map. Ideally, an optimized version of the

15

algorithm could operate fast enough to process 24 fps video in a reasonable amount of time. An
ideal implementation would also allow the user to manipulate the variables a, b, and Pboundary used
in the cost terms, and view the different depth map results. Because of the slow speed of this
implementation, a, b, and Pboundary were each given a fixed value, determined from an average of
what appeared to produce the best overall results. The slow processing speed of the algorithm also
limited the resolution of the images used, because high resolution images took an unreasonable
amount of time to process. The accuracy of the algorithm decreases with image resolution. At
higher resolution the normalized-cross correlation step preforms better because high frequency
information is preserved. Higher resolution also allows for a greater range of disparity and thus
more accuracy in finding depth.

The algorithm fell short of expectations in some areas and exceeded them in others. Generally, it
was expected that high frequency luminance content would perform well and low frequency content
would not. However, very high frequency content that did not accompany changes in depth caused
issues in the disparity correction step. When disparity edges were compared with nearby luminance
edges that were not an object edge (in other words, a large change in luminance on the surface of
an object), the disparity edges often were corrected to the wrong location. This is very evident
in both the construction image, Figure 16 column 2, and the image of the person posing who has
writing on his clothing, Figure 15 column 1. Conversely, low frequency content often performed
surprisingly well, as shown in the green screen images. Although the algorithm sometimes produced
small depth changes over the course of what was actually a flat surface, the depth measured by the
algorithm was quite close to the actual depth and the inaccuracies were not large enough to cause
keying problems.

16

Figure 15: Green screen scene results from stereoscopic algorithm as compared to LIDAR. For all
three depth maps, absolute white represents a distance of 6 meters.

17

Figure 16: Natural scene results from stereoscopic algorithm as compared to LIDAR. In the depth
maps, building 9 has a maximum depth of 45 meters, the construction has a maximum depth of
85 meters, the hallway has a maximum depth of 20 meters and the trees have a maximum depth
of 85 meters. An object located beyond 85 meters has a 0 pixel disparity and is represented by a
depth of 85 meters.

When the depth images were tested by a compositor, he found the correction process often
left some inaccurate bands around object edges. However, the bands often had a large enough
difference from the object that they could be keyed out along with the background. The edges
were very sharp and matched the objects well in many cases, more so than would be possible with
a chroma key. Also, the green light spill onto the objects in the green screen scenes meant that, to
chroma key properly, the color of the image had to be manipulated, which produced a noticeable
amount of grain and reduced the saturation of the image. The depth keyed versions did not have
this problem. The depth images, however, had a lot of noise, which in some cases was easy to matte
out but in others caused significant issues.

18

Figure 17: Depth keyed outdoor image.

Figure 18: Depth keyed green screen image.

19

Figure 19: Chroma keyed green screen image.

In the keyed images above, the chroma key is obviously more complete. However, the depth
keyed images best edges, around the top left side of the circle and left side of the white triangle
in Figure 18, are sharper and more accurate than the chroma keyed image, Figure 19. Also, the
chroma keyed image has a noticeable color shift, while the depth keyed image maintains the images
original color. In this comparison, the chroma key was completed using the professional application
Keylight. The depth keying has a good deal of room for improvement, as noted earlier.

Below are the results of the LIDAR scans compared to the results of the stereoscopic depth
algorithm. The LIDAR images were rendered in false color to better illustrate the depth changes.
In most cases the distance estimated by the stereoscopic method are very close to the ground truth.
In a few cases such as Figure 21, the stereoscopic method was more accurate than the LIDAR. The
LIDAR acted as ground truth for these comparisons but in a few notable paces, like Figure 21, it is
very obviously incorrect. When the scanner sends out a laser pulse into the sky of an outdoor scene
the pulse is never reflected back to the scanner and causes the system to register the point as zero
depth instead of infinity. This phenomenon can be seen in Figure 23, 24, and 25. The LIDAR’s
processing system includes an internal correction for dust which can cause other anomalies. In
Figure 21, the chicken wire included in the scene was recorded as being behind the green screen
wall, presumably because the small grid resembled dust. The laser used in the SICK system is
905nm and interacts with objects differently than visible spectrum light. In Figure 21, parts of the
wine glass are not recorded at all by the scanner because the glass was so thin that the 905nm light
did not interact with it, and merely passed through to the green screen.

20

Table 1: Green Screen: Table, nightstand, wall.

Point LIDAR Dist[m] 3D Dist[m] Discription

1 2.786 2.802 Nearest Wall
2 3.102 3.113 Middle Wall
3 3.541 3.502 Far Wall
4 7.688 6.466 Green Screen

Figure 20: LIDAR results of table scene.

Table 2: Green Screen: Fringing objects.

Point LIDAR Dist[m] 3D Dist[m] Discription

1 6.27 3.113 Chicken Wire
2 5.853 5.254 Green Screen
3 0 2.335 Wine Glass
4 1.597 2.335 Broom Bristles

Figure 21: LIDAR results of fringing
scene.

21

Table 3: Green Screen: Human posing.

Point LIDAR Dist[m] 3D Dist[m] Discription

1 1.628 2.335 Left Leg
2 1.839 2.402 Right Leg
3 2.129 2.335 Right Hand

Figure 22: LIDAR results of human fig-
ure.

Table 4: Outdoor: Pine Grove.

Point LIDAR Dist[m] 3D Dist[m] Discription

1 3.432 4.67 1st Tree
2 7.918 9.34 2nd Tree
3 15.025 16.81 3rd Tree
4 22.959 28.02 4th Tree

Figure 23: LIDAR results of pine grove
scene.

22

Table 5: Outdoor: Building 9.

Point LIDAR Dist[m] 3D Dist[m]

1 18.708 21.02
2 24.64 28.02
3 28.088 28.02
4 38.758 42.03

Figure 24: LIDAR results of building ex-
terior.

Table 6: Outdoor: Sculpture and construction behind
building 76.

Point LIDAR Dist[m] 3D Dist[m] Discription

1 14.059 14.01 Sculpture
2 10.042 10.51 Base
3 18.475 28.02 Further Base
4 0

Figure 25: LIDAR results of construction
and sculpture scene.

23

Table 7: Indoor: Front hallway of building 76.

Point LIDAR Dist[m] 3D Dist[m] Discription

1 5.425 7.33 Wall
2 12.013 12.932 Stairs
3 15.447 14.01 Stairwell
4 27.881 18.68 Color Cube

Figure 26: LIDAR results of interior hall-
way scene.

0.6 Conclusions

While this implementation for monocular capture was unsuccessful, other implementations that
were successful have results that would likely not be satisfactory for keying. Edges are typically
either very blurred or have inaccurate location, depending on the method used, and would not
be very useful for compositing. The results of the LIDAR showed that an auxiliary device could
be very useful for gaining depth information on a static scene, but the time required to scan the
environment would not be able produce a real-time depth channel for video. The stereoscopic algo-
rithm implemented here showed promise, producing crisp, accurate edges for some image content.
While the necessity for a stereoscopic camera rig could be a deterrent, the trend towards recording
films in 3D is gaining momentum and many films may be shot with stereoscopic rigs in the near
future. Additionally, the setup of a second camera may be a simpler and more attractive option
than the setup of a green screen. A more robust and optimized implementation of the algorithm
could likely give satisfactory results in a timely fashion and rival or surpass chroma keying, making
it a realistic option for depth keying video.

0.7 Acknowledgments

We would like to thank Ricardo Figueroa, David Long, Dr.Jan van Aradt, Dr.Harvey Rhody, Kerry
Cawse-Nicholson, Paul Romanczyk, David Kelbe, and Ryan Bliss. Their help this year was greatly
appreciated.

24

Bibliography

[1] L. Falkenhagen, “Depth estimation from stereoscopic image pairs assuming piecewise continu-
ous surfaces,” Tech. Rep., Institut für Theoretische Nachrichtentechnik und Informationsverar-
beitung Universität Hannover, Hannover, Germany, n.d.

[2] I. J. Cox et al., “Stereo without disparity gradient smoothing: a bayesian sensor fusion solution,”
in British Machine Vision Conference, 1992, pp. 337–346.

[3] Y. Yakimovsky, United States. National Aeronautics, Space Administration, and Jet Propul-
sion Laboratory (U.S.), A System for Extracting 3-dimensional Measurements from a Stereo
Pair of TV Cameras, NASA technical memorandum. Jet Propulsion Laboratory, California
Institute of Technology, 1976.

[4] D. Sunday. (2006), Distance between Lines and Segments with their Closest Point of Approach,
[Online]. Available: http://www.softsurfer.com.

[5] A. Saxena et al., “Learning depth from single monocular images,” Tech. Rep., Computer
Science Department, Stanford University, Stanford, CA.

[6] E.R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 3rd ed., Oxford, UK: Elsevier,
2005.

[7] P. Fua, “A parallel stereo algorithm that produces dense depth maps and preserves image
features,” Machine Vision and Applications, vol. 6, no. 1, pp. 35–49, 1993.

25

