Additional Notes on First-Order Archimedean Generators

J A Stephen Viggiano, PhD
jasvppr@rit.edu

24 June 2016

1 Generator and Pseudo-inverse

1.1 Generator

$$
\begin{equation*}
\phi(u)=\frac{1-u}{u+\alpha} \tag{1}
\end{equation*}
$$

with $u \in[0,1]$ and the parameter $\alpha \in[0, \infty)$.

1.2 Pseudo-inverse

$$
\phi^{[-1]}(s)= \begin{cases}\frac{1-\alpha s}{1+s}, & s \leq \frac{1}{\alpha} \tag{2}\\ 0, & s \geq \frac{1}{\alpha}\end{cases}
$$

2 Special Cases

- For $\alpha=0$, the generator is strict, and can generate multivariate copulas
- As $\alpha \rightarrow \infty, \phi(u) \rightarrow 1-u$, which generates the lower bound coupla.

3 Level Sets

3.1 Zero set

The zero set of the copula generated by the strict generator is simply the u and v axes.
For non-strict generators, the zero set of the copula will be the region bounded by the u and v axes and the solution to:

$$
\phi(0)=\phi(u)+\phi(v) .
$$

This may be solved for v as a function of u. Call this function $v_{0}(u)$:

$$
\begin{equation*}
v_{0}(u)=\frac{\alpha^{2}(1-u)}{\alpha^{2}+u(1+2 \alpha)} \tag{3}
\end{equation*}
$$

After Nelsen, [p 123] this boundary of the zero set will be referred to as the zero curve.

3.2 Level sets for other copula values

The level sets for $0<C(u, v)<1$ are curves, solutions to:

$$
\phi(\nu)=\phi(C)-\phi(\nu)
$$

where C is the value of the copula for which the level set is desired. For some applications, it may be sufficient to express this in generic form:

$$
\begin{equation*}
v_{C}(u)=\phi^{[-1]}[\phi(C)-\phi(u)] \tag{4}
\end{equation*}
$$

for $C \leq u \leq 1$ and $0<C<1$. However, it may be more convenient to have the level curves in closed form. First compute

$$
s=\phi(C)
$$

for the desired value of C. Obtain the result using:

$$
\begin{equation*}
v_{C}(u)=\frac{u[1-\alpha(s+1)]+\alpha(2-\alpha s)}{u(2+s)+\alpha(s+1)-1} \tag{5}
\end{equation*}
$$

for $u \leq s$. (Like the generator itself, this is a first-order rational function in u.)

3.3 Level sets, graphically

Level curves for the strict generator $(\alpha=0)$ are presented in Figure 3.3 for $C=1 / 8,2 / 8, \ldots, 7 / 8$. The curve for each value of C passes through the points $(1, C)$ and $(C, 1)$.

Figure 1: Level sets, $\alpha=0$
Level sets for $\alpha=0$, in increments of $1 / 8$, starting at $1 / 8$ and going up to $7 / 8$. Because the generator for $\alpha=0$ is strict, the zero set is simply the u and v axes.

Level curves for selected non-zero values of α are presented in Figure 3.3 for the same values of C as in Figure 3.3. In addition, the curve in each sub-figure passing through the points (1, $0)$ and $(0,1)$ are the zero curves for that value of α.

In the last subfigure in Figure $3.3(\alpha=10)$, the level curves are nearly lines, indicating this copula is very close to the lower-bound copula W.

4 Derivatives; copula density

Derivatives of the copula have several applications. These include random pair generation, iterative optimization of the parameter to a data set, and the copula density. In this section, the partial derivatives are presented, together with the mixed partial derivative.

4.1 Derivative of generator

$$
\begin{equation*}
\frac{d \phi(u)}{d u}=-\frac{1+\alpha}{(u+\alpha)^{2}} \tag{6}
\end{equation*}
$$

Figure 2: Level sets, $\alpha \in\{0.2,0.5,1,2,5,10\}$
The zero set in each plot is bounded by the u and v axes and the leftmost curve. The remaining curves in each plot are the level sets for $C(u, v)=1 / 8,2 / 8, \ldots, 7 / 8$.

4.2 Derivative of inverse generator

The derivative of the inverse generator exists for positive reals, other than $\frac{1}{\alpha}$:

$$
\frac{d \phi^{[-1]}}{d s}= \begin{cases}-\frac{1+\alpha}{(1+s)^{2}}, & 0<s<\frac{1}{\alpha} \tag{7}\\ 0, & s>\frac{1}{\alpha}\end{cases}
$$

4.3 Partial derivative of copula

Recognizing that $s=\phi(u)+\phi(\nu)$, the equations in the previous two sections may be combined:

$$
\frac{\partial C(u, v)}{\partial u}= \begin{cases}{\left[\frac{1+\alpha}{(u+\alpha)(1+s)}\right]^{2},} & s<\frac{1}{\alpha} \tag{8}\\ 0, & s>\frac{1}{\alpha}\end{cases}
$$

Because the variables u and v are exchangeable in an Archimedean copula, the partial derivative with respect to v is analogous.

4.4 Second mixed partial derivative

$$
\frac{\partial^{2} C}{\partial u \partial v}= \begin{cases}2\left(\frac{1+\alpha}{1+s}\right)^{3}(u+\alpha)^{-2}(v+\alpha)^{-2}, & s<1 / \alpha \\ 0, & s>1 / \alpha\end{cases}
$$

Making the substitution

$$
1+s=\frac{u+v-u v+\alpha(2+\alpha)}{(u+\alpha)(v+\alpha)}
$$

in the previous equation yields:

$$
\frac{\partial^{2} C}{\partial u \partial v}= \begin{cases}2\left(\frac{1+\alpha}{u+v-u v+\alpha(2+\alpha)}\right)^{3}(u+\alpha)(v+\alpha), & s<1 / \alpha \tag{9}\\ 0, & s>1 / \alpha\end{cases}
$$

