
Calculation of Scalars in Neugebauer-Like Models. I: Refactoring
the Calculations
J A Stephen Viggiano
School of Photographic Arts and Sciences
Rochester Institute of Technology

Abstract
This paper discusses a new way to compute weights (scalars) for

Neugebauer-like models that is more flexible than existing methods,
simplifying the insertion of a newmodel for scalar calculation. Specif-
ically, the scalar computing task is refactored into two independent
components. In one, the specific dot overlap behavior is specified in a
single, often simple, expression. This expression may be implemented
for each the three main overlap modalities in a function with a single-
statement body. The other component actually computes the scalars,
calling the other component as necessary. This second component has
been described algorithmically, and open-source software to demon-
strate it has been made available.

Introduction
Models of halftone reflectance have many applications, including
construction of profiles in color management, analysis of sensitivity
of color attributes to variables including ink amount, process con-
trol, colorant and substrate selection, colorant level optimization,
Pareto analysis of error sources, simulation, and, among others, sim-
ply “for the science of it.”

Some background is provided in the remainder of this section
and the following section. Motivation for the study is discussed in
Section . Specialized definitions are provided in Section . Sections
and disclose the new computation method for the two simplest
cases of two and three colorants. In Section , companion software to
demonstrate the new technique is introduced; details of numerical
tests are provided. Finally, conclusions and a description of ongoing
and future work are offered in Section .

What is this paper about?
In order to implement most models1 for halftone color prediction
with i inks or colorants, one must compute the weights (mathemat-
ically, scalars in a vector space) for each of the 2i primaries. This
computation depends on the specific manner the dots of different
colorants overlap each other.

While there are many different ways the dots may overlap each
other, there are only three that have received more than cursory
attention:

1. Independent overlap, as for traditionally angled clustered
dots and independent random screening, as modeled by the
Demichel equations; [3, 4, 5]

2. Dot-on-dot, where overlap is maximized; and

1A counter-example is Gustavson.[1, 2].

3. Dot-off-dot, where overlap is minimized, and dots of two col-
orants do not overlap until their combined relative area cov-
erage is unity.

Calculating the scalars for any of these (or other models) under the
current state of the art requires coding of p = 2i different expres-
sions; the number of expressions literally grows exponentially with
the number of colorants. This paper shows how the implementation
can be split into two different tasks, the first dependent solely on the
number of colorants, the second containing the specifics of the dot
overlap behavior. Companion software is provided that generates
code to implement the first component; the second may be, for any
of the three models enumerated above, a simple function with a
one-line body. For the dot-on-dot model, the function in Python
may be:

def dot_on_dot (colorant_amounts):
return min (colorant_amounts)

This contrasts sharply with the 8! = 40320 cases that need to be
considered in a state-of-the-art implementation for eight colorants.

The dramatic reduction in complexity is meritorious in its own
right; papers to follow this one will discuss the class of functions
that may be used for dot overlapmodels, permitting greater halftone
color model flexibility, and, as a consequence, greater accuracy and
robustness.

Objectives
The primary goal of this investigation, as a whole, is to enable
greater accuracy and robustness (scenarios for which the assump-
tions are satisfied to a practical extent) to models for halftone color.
Specifically, the aim is to both enable models for dot overlap other
than those traditionally used, and to identify an entire category of
functions that may be used for this purpose. Combined, these can
open an all-but-neglected dimension for improvement of model ac-
curacy.

This paper, the first part of a three-part series, presents a novel
method for calculating the scalars (“area fractions”) common to
many models of halftone color. In software engineering, refactoring
denotes…

…the process of changing a software system in such a
way that it does not alter the external behavior of the
code yet it improves its internal structure. It is a disci-
plined way to clean up code that minimizes the chances
of introducing bugs. [6]

The refactoring described in this paper permits the scalars to be
computed as simple sums and differences of a single function, en-
abling, in turn, a fast, uncomplicated, and sure way to account



for different modes of dot overlap beyond the traditional angled
screens (Demichel), dot-on-dot, and dot-off-dot, all of whose condi-
tions may easily be violated in practice. When changing the model
for dot overlap, only a single, simple, function need be changed,
rather than an entire block of sometimes complex code.

One may wonder why the refactoring is being offered prior to
discussing the class of functions that govern halftone dot overlap.
Software engineering expert Fowler offers the following wisdom:

When you find you have to add a new feature to a pro-
gram, and the program’s code is not structured in a con-
venient way to add the new feature, first refactor the pro-
gram to make it easier to add the new feature, then add
the new feature. [7]

The refactoring is described in this paper. The later papers will
describe the “new features” (alternate models for dot overlap) and
strategies for using them.

Neugebauer-Like Models
In this paper, a Neugebauer-like model for the color produced by a
hard-copy process may be written:

ϕ
(
β⃗
)
=

p∑
j=1

a j ·ϕ
(
β⃗ j

)
(1)

where ϕ : R+ →R is a bijection, an invertible function; it maps non-
negative real numbers to real numbers;

the β⃗ j are radiance factor spectra of Neugebauer primaries
(henceforth, simply “primaries”);

the a j are the area fractions occupied by each primary;
p is the number of primaries; and
β⃗ is the spatially-averaged radiance factor spectrum of the re-

sulting halftone pattern.
Because ϕ is invertible, the radiance factor spectrum of the

colored pattern may be written explicitly:

β⃗=ϕ−1

[
p∑

j=1
a j ·ϕ

(
β⃗ j

)]
(2)

Mathematically, Eq (1) may be described as a convex sum in
a vector space, with the role of the vectors played by each ϕ(β⃗),
and the scalars by the area fractions a j . The scalars are computed
from the colorant amounts; these calculations depend on the spe-
cific manner the dots of different colorants overlap each other.

Note that Eq (2) reduces to Neugebauer’s [8] when the bijec-
tion ϕ is the identity function and the scalars are computed accord-
ing to Demichel’s [3, 4, 5] formulae. Another special case for (2)
occurs whenϕ is a power function (the reciprocal of the exponent is
referred to as the Yule-Nielsen [9] n value) and the Demichel equa-
tions are used. [10, 11, 12]

A third special case is contained in Balasubramanian, [13] who
provided a model for halftone color when using so-called dot-on-dot
screening by changing the calculation of the scalars. Specifics of
scalar calculation underDemichel’s andBalasubramanian’smodels
for two colorants will be covered below.

Neugebauer-type models have been applied to varied applica-
tions, including printing on ceramics, [14] two-sided printing for
backlit displays, [15, 16] and printing with metallic inks. [17]

Generalizations of Neugebauer-like models
Heuberger, et alii, [18] suggested the cellularmodel, a popular gen-
eralization of Neugebauer’s original model (ϕ(β) = β, the identity
function). Each colorant axis is partitioned into two or more sub-
axes (so the unit cube (or hypercube) is partitioned into a plurality of
subspaces, each a rectangular (hyper) parallelepiped); the colorant
amounts are normalized to [0, 1] within each partition, and Neuge-
bauer’s model is applied within each. This requires additional pri-
maries; for example, if each of i = 4 colorant axes are partitioned
into two sub-axes, there will be 81 primaries ((2+1)4) rather than
the 16 required by the non-cellular approach with the same num-
ber of colorants. Heuberger and his co-authors suggested printing a
characterization target with these additional “virtual” primaries.

Balasubramanian [19] suggested a further generalization of
this idea, applying the Yule-Nielsen correction to Heuberger’s cel-
lular model. He further suggested performing a characterization of
this model based on conventionally angled screens, another for dot-
on-dot screening, and accounting for the inevitable misregistration
by using a convex sum of the reflectance spectra predicted by each
model. Balasubramanian presented empirical evidence that, while
the use of this linear blending provided a significant increase in ac-
curacy for the non-cellular approach, the cellular approach, even
with modest sub-partitioning, produced not only superior accuracy,
but results that were relatively invariant with respect to the param-
eter of the convex combination; refer to his Figure 8 on page 164.
Pjanic and Hersch recently used this model to predict specular re-
flectance on printed metallic substrate. [20]

While promising, that insertion of a minimal level of partition-
ing performs as well as or better than blending reflectance for two
overlap modes suggests that at least some of the utility and appeal of
the cellular approach lies in its ability to compensate for (or adapt
to) departures of the actual dot overlap behavior from that assumed
by one of the classic overlap models of Demichel, dot-on-dot, or
dot-off-dot.

Hersch and Crètè [21] found evidence that, when using
Eq (1), colorant amounts appear to depend on the amount of
previously-printed colorants. In other words, if magenta is deposited
after cyan, the same requested amount of magenta colorant may re-
sult in a declining amount of magenta colorant as the amount of
cyan colorant increases. They proposed a solution for this; their re-
vised model fits within the framework of Neugebauer-type models
as described above with some inter-channel pre-processing is per-
formed on the input colorant amounts. Again, it is possible that a
component of this improvement may be attributable to less-than-
perfect modeling of dot overlap behavior.

Probability interpretation of scalars
The scalars act as weights for the primaries, so it is intuitive to think
of them as the fraction of area occupied by each primary. Extending
this intuitive picture further, Hersch articulated a probability inter-
pretation of the scalars. [5] While Hersch considered only the case
introduced by Demichel (the subject of Hersch’s article), applica-
ble to certain types of screening (when the presence or absence of
a colorant is independent of the presence or absence of any of the
other colorants, as in conventionally angled screening),

Motivation for this study
The main restrictions on the function ϕ is that it be defined on
the unit interval, and that it possess an inverse to permit computa-



tion of the result. Thus, varied families of Neugebauer-like models
may be easily generated. On the other hand, the restrictions on the
scalars seemmore intimidating; not onlymust they be non-negative,
but they must also sum to unity. Naturally, they must reflect the
actual overlap behavior with reasonable accuracy. Rather than a
single function, there are typically eight (for three-ink printing) or
16 (for four-ink printing). Under the current paradigm, the num-
ber of equations grows exponentially with the number of colorants.
For inkjet printers having six, seven, or ten inks, the complexity in-
creases dramatically, complicating coding and testing and leaving
many more opportunities for error.

When modeling dot-on-dot printing, it is unclear how to ac-
count for departure from perfect concentric dots caused by in-
evitable misregistration. Even if one derived a set of equations
(one for each primary) for the scalars as functions of the colorant
amounts, one equation for each primary would need to be coded
and tested. To offer another example, one may employ dot-on-dot
screening for cyan, magenta, and yellow, and, with an eye towards
maximizing gamut, use the dot-off-dot arrangement for the black
relative to the others. How should the scalars be calculated under
these circumstances? Finally, in six- and seven-ink printing, com-
mon screen angles may be shared by pairs of inks. Again, it is un-
clear under the current state of the art how to proceed, and would
require extensive coding and testing if and when a solution became
available.

Clearly, it would be advantageous, should dot overlap behavior
change, or should onewish to simulate a different type of dot overlap
behavior, to have the following options:

• Specify a single, relatively simple, equation, easy to code and
test;

• Have a rich parametric family in which a few parameters
could be changed or tuned;

• Build a complete overlap model for many inks easily by com-
bining/leveraging very simple models.

It will be shown that the new approach for computing the scalars,
or area fractions of each primary, has many advantages over the the
existing method. These include:

Simpler coding. The calculation of scalars is factored into two in-
dependent tasks, simplifying coding.

Greater flexibility. The model for colorant overlap is provided in a
single function, easily changed, permitting run-time selection
of this component of the model.

Easier testing. The separation of the calculation into two indepen-
dent tasks also simplifies testing of the code for new overlap
models.

Ability to handle complex overlap models. Models for complex col-
orant overlap behavior may often be simple to write in terms
of simpler models. An example of this will be provided later.

Many families of existing models. In the next paper in this series, it
will be shownhow to leveragemodels from statistical literature
for not just for traditional colorant overlap situations, but for
many others, as well.

Tuning opportunities. Rich families of functions with one or two
parameters may be employed, enabling an opportunity for op-
timizing accuracy through judicious parameter selection.

Some definitions
Some specialized notation and nomenclature will be used in this
paper.

Primaries as power set of colorants
The distinction must be made between colorants (inks) and pri-
maries. The symbol i will be used for the number of inks or col-
orants, and p for the number of primaries. Mathematically, the pri-
maries are the power set [23] of the colorants, with p = 2i .

If a set of three inks (i = 3) are represented with the single
letters “c,” “m,” and “y,” respectively, there will be p = 8 primaries:
the plain paper, denoted in set notation as {} (none of the inks), the
individual inks {c}, {m}, and {y}, the two-colorant overprints {c, m},
{c, y}, and {c, m}, and the three-colorant overprint {c, m, y}.

Context will generally permit omission of the set-denoting
braces and commas when naming the primaries. For example, the
cyan and magenta overprint primary, {c, m}, may be abbreviated
as “cm” with the understanding that this denotes the primary itself,
rather than the product of the two colorant amounts. The plain pa-
per primary, {}, may be written as “w” (for “white”). Thus, the scalar
(“area fraction”) for the cyan and magenta overprint will be written
as acm , and reference will be made to the “cm” primary.

Cardinality and parity of a primary
The cardinality of a primary A, denoted #A, is the number of col-
orants that make up that primary. For example, the primaries c, m,
and y each have cardinality 1; cm, cy, and my all have cardinality
2, and so on. The cardinality of the plain paper is 0 (#w = 0).

A primary will be said to have even parity if its cardinality is
even, and similarly odd parity if its cardinality is odd. For example,
the primaries cm, cy, and my all have even parity, while the single
inks and the three-colorant overprint all have odd parity. Note that
the unprinted substrate has zero colorants, hence it has even parity.

Scalar for final primary
The scalar for the primary composed of all colorants, which shall
be referred to as the final primary, characterizes the entire overlap
behavior, insofar as calculation of the scalars is concerned. In the
next two sections, it will be shown that all scalars may be algorithmi-
cally computed in terms of this function. Because of this key role,
the notation F (c,m, . . .) for this function will be introduced.

Under the probability interpretation of the scalars, the final
scalar is a joint probability, and the function F (c,m, . . .) is a (cu-
mulative) joint probability distribution function. More specifically,
because all colorant amounts are restricted to the unit interval [0,1],
and the probability that a light ray is incident on a region covered
by a colorant is equal to the amount of that colorant (i.e., P (c) = c,
for c ∈ [0,1]), F may be further characterized as a joint distribution
function with unit uniform marginal distributions.

Scalar Computation for Two Colorants
In this section, the colorants (and colorant amounts) will be referred
to using the symbols c and m.

Recall that the function that computes the area fraction of
the i -color overprint from the colorant amounts is denoted F .



Figure 1. Venn diagram for two colorants

The event “c” corresponds to the entire circle on the left;
the event “m” is indicated by the entire circle on the right;
their intersection, “c ∩ m,” is the lens-shaped region they
share; their union, c ∪m, is the region occupied by one,
the other, or both. The regions are not to scale; in particu-
lar, the intersection could have zero area, or consume all
of both c and m, or be anywhere between these extremes,
depending on the relative colorant amounts and the dot
overlap modality.

For 2-ink conventionally-angled screens, F (c,m) = c · m, for 2-
colorant dot-on-dot, F (c,m) = min(c,m), and for 2-colorant dot-off-
dot, F (c,m) = max(0,c +m −1). (While many other overlap func-
tions exist, these three are the most familiar. The method described
here applies for any overprint for binary printing processes.)

Make note of a few simple identities that apply to all three
cases:

1. F (1,1) = 1

2. F (c,1) = c

3. F (1,m) = m

Probability model for scalars, two colorant case
The symbol “∩” denotes the logical intersection, or “and;” the sym-
bol “∪” is used to denote the logical union, or “or.” These events are
illustrated for two colorants in Figure 1. In addition, the overbar, as
in e, denotes the logical negation of the event e (“not”). P (e) is the
probability of the event e. The scalars are then:

acm =P (c ∩m) = F (c,m)

ac =P (c)−P (c ∩m) = c −F (c,m)

am =P (m)−P (c ∩m) = m −F (c,m)

aw =P (c ∪m) = 1−P (c)− [P (m)−P (c ∩m)]

=1−c −m +F (c,m)

(3)

Building the coefficient matrix
While this case is rather simple, a matrix solution will nevertheless
be provided to help elucidate the solutions for higher-order cases.
This matrix method may be applied to an arbitrarily large colorant
set. The matrix may be constructed by first writing two header rows
and columns. The first header row and column contain the pri-
maries. While any order will do, Yates’s standard order [24] will be

used in this investigation (it has several attractive properties, includ-
ing an algorithmic definition and a fast test for inclusion). It is rec-
ommended to use the same order for the row and column header.
The second header row and column are the parities of each pri-
mary. Using “e” for even parity and “o” for odd parity, and keeping
in mind that the primary w has zero colorants:

w c m cm
e o o e

w e
c o
m o
cm e

Build the body of the table row by row, using the following rules:

1. If the row primary not a subset of the column primary, enter
a zero.

Otherwise,

2. If both primaries have the same parity, enter a one at that po-
sition.

3. If the primaries have different parities, enter the value “-1” at
that position.2

For the first row, only the second and third rules apply, because
the plain paper is a subset of all primaries. The single-ink primaries
c and m have opposite parity, while w and cm have the same parity
as w, so the matrix, after filling in the first row is:

w c m cm
e o o e

w e 1 -1 -1 1
c o
m o
cm e

Applying the rules to the remaining rows yields:

w c m cm
e o o e

w e 1 -1 -1 1
c o 0 1 0 -1
m o 0 0 1 -1
cm e 0 0 0 1

Checking the matrix
One may perform some checks on the entries; the number on non-
zero entries in each row will be p for the primary w, p ÷2 for the
single-colorant primaries, and p ÷ 4 for the two-colorant primary.
The coefficient sum for each row, except for the row for the primary
with all colorants, should be zero.

More generally, the number of non-zero elements in the row
corresponding to an arbitrary primary A will be p ÷2#A .

2This is recommended for hand computation. For machine computa-
tion, the second “header” row and column likely to be in a single sequence
such as a list, array, or similar container, and are populated with the cardi-
nality of each primary. Rules 2 and 3 may be revised as follows: 2a. If the
sum of the row and column cardinalities is even, a one is entered at that po-
sition; 3a. If the sum of the cardinalities of the row and column is odd, assign
a “-1” at that position. Testing for inclusion of row primary in the column
primary is still performed. This is the procedure used by the demonstration
software.



Left- and right side vectors
Form the vector for the left side of the matrix equation from the first
header column, attaching each primary to a scalar:

aw
ac
am
acm


Form the right-hand vector from the first header column, using

each as arguments to the 2-colorant overlap function, F , replacing
empty positions with 1s in the argument list, and substituting the
identities F (1,1) = 1, F (c,1) = c, and F (1,m) = m:

F (1,1)
F (c,1)
F (1,m)
F (c,m)

 , equivalent to


1
c
m

F (c,m)


The matrix equation is then written as:

aw
ac
am
acm

=


1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1




1
c
m

F (c,m)

 (4)

or, in non-matrix notation:

aw =1−c −m +F (c,m)

ac =c −F (c,m) (4a)

am =m −F (c,m)

acm =F (c,m)

Verification
The inverse of the coefficient matrix in Eq (4) is nearly identical;
simply replace all -1s with +1s. The linear system written in the
other direction (values of F as functions of the scalars) is:

1 =aw +ac +am +acm

c =ac +acm

m =am +acm

F (c,m) =acm

(5)

The first equation in (5) is consistent with Eq (1) being a convex
sum (coefficients sum to unity), while the last is true by definition of
F . The remaining two are easily verified for all three overlap modes
presented earlier (conventionally angled screen using Demichel,
dot-on-dot, and dot-off-dot).

Scalar Computation for Three Colorants
If the probability argument from the two-colorant case is extended
to three colorants, one is led to the same solution presented below.
In the interest of practicality and brevity, only the algorithmic solu-
tion is presented here.

A third colorant (here, “y”) is appended to the colorant list. The
list of primaries in Yates’s standard order is obtained by repeating the
list of primaries from the two-colorant case and including this third
colorant in all the repeated members. The list of primaries is again
used as a header row and column to build the coefficient matrix,

as is the parity of each primary. The same three rules are applied
to complete the body of the matrix. The coefficient matrix with the
header rows and columns appears below:

w c m cm y cy my cmy
e o o e o e e o

w e 1 -1 -1 1 -1 1 1 -1
c o 0 1 0 -1 0 -1 0 1
m o 0 0 1 -1 0 0 -1 1
cm e 0 0 0 1 0 0 0 -1
y o 0 0 0 0 1 -1 -1 1
cy e 0 0 0 0 0 1 0 -1
my e 0 0 0 0 0 0 1 -1
cmy o 0 0 0 0 0 0 0 1

Left- and right-side vectors
As in the two-colorant case, the argument lists for the overlap func-
tion F are built from the primaries by inserting a “1” in any posi-
tions where a colorant is missing, and making use of the identities
F (c,1,1) = c, F (1,m,1) = m, F (1,1, y) = y , and F (1,1,1) = 1. The
vectors on the left and right sides of the matrix equation are, respec-
tively:

aw
ac
am
acm
ay
ac y
amy
acmy


and



1
c
m

F (c,m,1)
y

F (c,1, y)
F (1,m, y)
F (c,m, y)


The complete set of linear equations, in matrix form, is:



aw
ac
am
acm
ay
ac y
amy
acmy


=



1 −1 −1 1 −1 1 1 −1
0 1 0 −1 0 −1 0 1
0 0 1 −1 0 0 −1 1
0 0 0 1 0 0 0 −1
0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 1





1
c
m

F (c,m,1)
y

F (c,1, y)
F (1,m, y)
F (c,m, y)


(6)

Arbitrarily-sized Colorant Sets
This procedure is easily extended to colorant sets of arbitrary size.
Software written in the Python computer programming language is
available online3 under the GNU General Public License, Version
3.

Utilities helpful in implementing the new method are sup-
plied in a Python module. The functions provided can start with
a single string containing one letter for each colorant and generate
the set of primaries in Yates’s standard order. An example session
follows; the “>>>” is the prompt from the Python interactive shell:

>>> from neugebauer_scalar_utils import *
>>> inks = 'cmy'

3https://sourceforge.net/projects/
neugebauerscalar/



>>> primaries = yates (inks)
>>> print primaries
['', 'c', 'm', 'cm', 'y', 'cy', 'my', 'cmy']
>>> matrix = build_coef_matrix (primaries)
>>> for row in matrix:
print row

[1, -1, -1, 1, -1, 1, 1, -1]
[0, 1, 0, -1, 0, -1, 0, 1]
[0, 0, 1, -1, 0, 0, -1, 1]
[0, 0, 0, 1, 0, 0, 0, -1]
[0, 0, 0, 0, 1, -1, -1, 1]
[0, 0, 0, 0, 0, 1, 0, -1]
[0, 0, 0, 0, 0, 0, 1, -1]
[0, 0, 0, 0, 0, 0, 0, 1]
>>> var, stmts = cache_function_calls (primaries)
>>> code = build_code (var, stmts, matrix)
>>> for statement in code:
if len (statement):
print statement

def scalars (F, c, m, y):
f_cm = F (c,m,1)
f_cy = F (c,1,y)
f_my = F (1,m,y)
f_cmy = F (c,m,y)
return (

1 - c - m + f_cm - y + f_cy + f_my - f_cmy,
c - f_cm - f_cy + f_cmy,
m - f_cm - f_my + f_cmy,
f_cm - f_cmy,
y - f_cy - f_my + f_cmy,
f_cy - f_cmy,
f_my - f_cmy,
f_cmy,

)
>>>

In the first line, the contents of the library (called a module
in Python) are imported into the current namespace. Next, the
colorant set is specified; one character is used for each colorant.
The module-supplied functions yates, build_coef_matrix,
cache_function_calls, and build_code are called. The
return value from this last function contains a list of Python state-
ments; they constitute the Python code to compute the scalars in-
dependent of the specific overlap model being used.

If the code generated in the example above were put in a
Python source file, and the following two functions also defined in
that file, the first for the Demichel equations, the second for dot-on-
dot:

def independence (c, m, y):
"""Used for angled screens and independent

random-dot patterns;
implements the Demichel equations.

"""
return c * m * y

def dot_on_dot (c, m, y):
"""Used for dot-on-dot screening patterns.
"""
return min (c, m, y)

and the source file imported into an interactive session, one could
do the following:

>>> scalars (independence, 0.2, 0.4, 0.6)

(0.19200000000000003, 0.04800000000000001,
0.12800000000000003, 0.03200000000000001,
0.288, 0.07199999999999998,
0.19199999999999998, 0.04800000000000001)

>>>scalars (dot_on_dot, 0.2, 0.4, 0.6)
(0.4000000000000001, 0.0, 0.0, 0.0,
0.19999999999999996, 0.0, 0.2, 0.2)

The reader’s attention is drawn to three points: First, the func-
tion bodies (the part coming after the function declaration and the
triple-quoted documentation string) specific to the overlap models
are a single, simple line of code. Secondly, exercising either model
involved a simple call to the function provided by the demonstra-
tion software. Thirdly, switching from one overlap model to the
other required only changing a single argument in this function
call.

More specific examples for using this code are included in the
demonstration suite.

Testing
Several tests were performed on the software suite. Results for two,
three, and four colorants were checked and agreed with hand cal-
culations.

In order to provide some validation of both the software and
the underlying theory, numerical tests were performed. Code was
written in Python to compute scalars using both the old and new
methods. (The test programs are also available for download from
the project site.) Onemillion random colorant amount vectors were
generated, and the scalars for each method were compared.

The results of this testing are summarized in Table 1. For
two colorants, the old and new methods were compared for dot-
off-dot, dot-on-dot, and conventionally-angled screens governed by
the Demichel equations. For three colorants, the comparisons were
performed for dot-on-dot and angled screens; dot-off-dot is limited
to two colorants. Because the computer code for the traditional
computation method became difficult to write for dot-on-dot, it
was not compared for more than three colorants. (It could easily
have been exercised for six colorants, for example; doing so requires
only substituting the one-line function used for six-colorant angled
screens for the one-line function that governs six-colorant dot-on-
dot.) Comparisons for four, five, six, and eight colorants were per-
formed for angled screens only.

The magnitude of the scalars are comparable to one, so it is
valid to compare them directly to the computing environment’s
floating point epsilon, here, approximately 2.210−16. In all cases,
the absolute difference between the scalars computed using the old
and newmethods was nomore than two orders ofmagnitude greater
than the floating point epsilon, indicating primarily rounding error.
In any case, the differences have no practical impact.

Conclusions and Future Work
It has been shown that the computation of scalars in Neugebauer-
type models may be factored into two independent components.
One is indifferent to overlap modality and contains an expression
for each scalar to be computed; the other encapsulates the specific
overlap behavior and may be very compact, consisting, perhaps, of
a single expression. An algorithm for generating a matrix for the
first component has been described, and demonstration software to



Table 1. Results of testing.

Scalars computed using traditional and new methods
agree to within 10−14 or better for one million runs for
2, 3, 4, 5, 6, and 8 colorants.

overlap # of # of # of Largest
mode inks primaries comparisons Error

Dot off Dot 2 4 4 000 000 < 10−16

Dot on Dot 2 4 4 000 000 < 10−16

Angled 2 4 4 000 000 < 10−15

Dot on Dot 3 8 8 000 000 < 10−16

Angled 3 8 8 000 000 < 10−15

Angled 4 16 16 000 000 < 10−15

Angled 5 32 32 000 000 < 10−15

Angled 6 64 64 000 000 < 10−15

Angled 8 256 256 000 000 < 10−14

perform this has beenmade available under an open-source license.
The refactoring process has been verified for the three main

overlap models using two colorants, two of them (dot-on-dot and
angled screening) for three colorants, and for one of them (angled
screens) additionally for four, five, six, and eight colorants. In nearly
400million scalar comparisons, no difference larger than 10−14 was
encountered.

The next paper in this series will enumerate the characteris-
tics of the function that characterizes a dot overlap modality, iden-
tify the class of function, and provide examples. In the third paper,
strategies for fitting these functions to data will be discussed.

Other future work may include revision of the software library
so it generates code in other languages, such as C, C++, or Java.

References
[1] Stefan Gustavson and Björn Kruse. “Evaluation of a light diffusion

model for dot gain.” In TAGA Proceedings (Technical Association of
the Graphic Arts, 1996), p. 58–68.

[2] Stefan Gustavson. Dot Gain in Colour Halftones. Ph.D. thesis
(Linköping, SE: Linköping Institute of Technology, 1997).

[3] Procèdè, 26 (3):17–21 (1924).
[4] Procèdè, 26 (4):26–27 (1924).
[5] Roger D Hersch. “Demichel equations.” In Encyclopedia of Color

Science and Technology, p 572–575 (New York: Springer, 2106).
[6] Martin Fowler. Refactoring: Improving the design of existing code.

Reading, MA: Addison-Wesley (1999), p xvi.
[7] Fowler, p 7.
[8] Hans E J Neugebauer. “Die theoretischen Grundlagen des Mehrfar-

benbuchdrucks.” Zeitschrift für wissenschaftliche Photographie Photo-
physik und Photochemie, 36 (4):73–89 (1937).

[9] J A C Yule and W J Neilsen [sic]. “The penetration of light into paper
and its effect on halftone reproduction.” In TAGA Proceedings (Tech-
nical Association of the Graphic Arts, 1951), p. 65–76.

[10] J A Stephen Viggiano. “The color of halftone tints.” In TAGA Proceed-
ings (Technical Association of the Graphic Arts, 1985), p. 647–661.

[11] J A Stephen Viggiano. “Modeling the color of multi-color halftones.”
In TAGA Proceedings (Technical Association of the Graphic Arts,
1990), p. 44–62.

[12] J A Stephen Viggiano. Models for the Prediction of Color in Graphic

Reproduction Technology. MSc thesis (Rochester, NY: Rochester In-
stitute of Technology, 1987).

[13] Raja Balasubramanian. “Printer model for dot-on-dot halftone
screens.” In Proceedings of SPIE Volume 2413 Color Hard Copy and
Graphic Arts IV (International Society forOptical Engineering, 1995),
p. 356–364.

[14] Achim Lewandowski, Marcus Ludl, Gerald Byrne, and Georg
Dorffner. “Applying the Yule-Nielsen equation with negative n.” Jour-
nal of the Optical Society of America A, 23 (8):1827–1834 (2006).

[15] Mathieu Hébert and Roger David Hersch. “Reflectance and trans-
mittance model for recto-verso halftone prints: spectral predictions
with multi-ink halftones.” Journal of the Optical Society of America
A, 26 (2):356–364 (2009).

[16] Mathieu Hébert and Roger D. Hersch. “Yule–Nielsen based recto–
verso color halftone transmittance prediction model.” Applied Optics,
50 (4):519–525 (2011).

[17] Vahid Babaei and Roger D Hersch. “Color reproduction of metallic-
ink images.” Journal of Imaging Science and Technology, 60 (3):30503-
1 – 10 (2016).

[18] Karl J. Heuberger, Zhou Mo Jing, and Serdar Persiev. “Color transfor-
mations and lookup tables.” In TAGA/ISCC Proceedings. (Technical
Association of the Graphic Arts, 1992), p. 863–881.

[19] Raja Balasubramanian. “Optimization of the spectral Neugebauer
model for printer characterization.” Journal of Electronic Imaging,
8 (2):156–166 (1999).

[20] Petar Pjanic andRogerDHersch. “Specular color imaging on ametal-
lic substrate.” In 21st Color and Imaging Conference Final Program
and Proceedings. (IS&T, 2013), p. 61 – 68.

[21] Roger David Hersch and Frèdèrique Crètè. “Improving the Yule-
Nielsen modified spectral Neugebauer model by dot surface cover-
ages depending on the ink superposition conditions.” In SPIE vol.
5667: Color Imaging X (International Society for Optical Engineer-
ing, 2005), p. 434–445.

[22] F R Clapper and J A C Yule. “The effect of multiple internal reflec-
tions on the densities of half-tone prints on paper.” Journal of the Op-
tical Society of America, 43 (7):600–603 (1953).

[23] Kam-tim Leung and Doris Lai-chue Chen. Elementary Set Theory,
Part 1 (Hong Kong: Hong Kong University Press, 1979), p 36–37.

[24] Samuel Kotz and Normal L Johnson, editors. “Yates’ method,” in En-
cyclopedia of Statistical Sciences, volume 9 (New York: John Wiley
and Sons, 1982), p 659–662.


