
Spectral Capture at 30fps

May 23, 2012

Author:
Chris Mondiek

Advisor:
David Long

Submitted in partial fulfillment of the requirements for
the BS degree in the School of Film and Animation,
Rochester Institute of Technology, Rochester, NY
© Chris Mondiek 2012

1

Contents
1 Abstract 4

2 Theory / Background 4
2.1 Trichromatic Theory . 4

2.1.1 Human Cone Response 4
2.1.2 Metamerism . 5
2.1.3 CIE Standard Observer 6

2.2 Observer Metamerism . 7
2.3 Why Spectral Imaging? . 9

3 Design Objectives 10

4 Initial Design Concepts 11
4.1 Two color filter array cameras through beam splitter 11
4.2 Three CFA cameras through a X prism 11
4.3 Six cameras through a X prism & beam splitters 12
4.4 Six monochrome cameras through beam splitters 13

5 Post Processing Design Options 14
5.1 Determination of capable hardware 15
5.2 Field Programmable Gate Array (FPGA) 15
5.3 PC with software . 16
5.4 Implementation Choice . 16

6 Algorithm Details 17
6.1 Image Registration Algorithm . 17
6.2 Spectral Estimation Algorithm (Training) 19

6.2.1 Determine Eigen Vectors 19
6.2.2 Determine Principle Component Values 20
6.2.3 Camera Training Considerations 21

7 Camera Characterization / Filter Selection 21
7.1 Linearity . 22
7.2 Spectral Sensitivity . 22

7.2.1 Filter Pair Selection . 24
7.3 Verification of Simulations . 25

8 Camera Design Implementation 27

9 Image Processing Implementation 30
9.1 How it was done . 30
9.2 Saving the Data . 30

10 Using the SpectraCam 5000 Software 31

2

11 System Performance 35
11.1 Comparison for all patches . 35
11.2 Nine Best/Worst . 36
11.3 Version 2.0 . 38

12 Conclusion 39

3

1 Abstract
Traditional three channel imaging systems are limited in the color accuracy they
can produce and also have serious issues with observer metamerism. Spectral
imaging involves capturing more than three channels of color information to
record all the spectra available at the scene. By recording and then ultimately
projecting spectra, observer metamerism can be greatly reduced. Here, a spec-
tral imaging system using six primaries was constructed using two Imaging
Source DFK 31BF03 cameras focused through a beamsplitter and Hassleblad
lens to a scene. Two Schott filters, VG9 and BG40 were placed over each camera
to create the different spectral sensitivities. The images from the two cameras
were captured by a PC using C++ for processing and storage. The images
were then digitally registered, combined into a spectral image, and stored into
an XML file container containing the principle component values which can be
used to directly recreate scene spectra for each pixel.

2 Theory / Background

2.1 Trichromatic Theory
2.1.1 Human Cone Response

All traditional color systems available today capture three channels of infor-
mation, usually red, green, and blue. This system works because humans are
also based on trichromacy and have long, medium, and short wavelength cones,
which correspond approximately to red, green, and blue spectral sensitivities
respectively as shown in the figure below. Each type of cone will generate a sig-
nal based on what wavelengths are present and that cone’s sensitivity to those
wavelengths. This is shown by the below equation where Φ(λ) is the spectral
power distribution (SPD) of the stimulus and L(λ), M(λ), S(λ) are the cone
spectral responses, and L, M, and S are the generated cone responses.

L =
ˆ
φ (λ)L (λ) dλ

M =
ˆ
φ (λ)M (λ) dλ

S =
ˆ
φ (λ)S (λ) dλ

4

Figure 2.1: LMS sensitivity of eye

2.1.2 Metamerism

Because the generated response for each L M and S is one number based on
spectral summation, multiple stimuli SPDs can generate the same response.
This idea can be better understood by looking at a simple case of monochromatic
sources. A source at ~420nm and 475nm both will generate the same response
on the S cone because those two wavelengths both have the same sensitivity for
the short cone. This idea can be expanded to a full spectrum source and can
be seen in figure 2.2 below. The solid and dotted lines represent two different
stimuli. As can be seen from the figure they have quite different SPDs, but they
integrate to generate the same LMS responses. These are called metameric
pairs and the idea of metamerism is the basis for trichromatic imagery today.
Because of metamerism, it is possible to reproduce real world colors without
actually reproducing their exact spectra. All that needs to be done is to come
up with some stimulus that matches the spectra of the object that is being
imaged. The idea can also be used on any system with spectral sensitivities,
so cameras, and other devices also are susceptible to metameric pairs. But one
pair of metameric matches is only valid for one particular curve, so if that curve
is changed, then those two pair might not produce the same color any more.

5

Figure 2.2: Metamerism Example (Image courtesy of Reinhard)

2.1.3 CIE Standard Observer

Experiments were run in 1931 to determine what combinations of three red,
green, and blue primaries, at 435.8, 546.1, and 700nm respectively, would match
a single monochromatic light. This was done to determine the human color
response. The curves shown in the figure below are what was determined by
the experiment. It should be noted that the rbar curve goes negative for some
values. This is because some colors could not be matched by simply adding
the primaries. In some cases negative amounts of some primaries were needed,
which was obtained by adding light to the test patch in the experiment.

Figure 2.3: rgb color matching functions

It was desired to create a set of all positive color matching functions to ease in
calculations and to also integrate the existing photopic response curve V(λ) into

6

the set. This can be done by transforming the rgb color matching functions to a
set of color matching functions using imaginary primaries. The use of imaginary
primaries is mathematically possible, but not physically realizable, thus it can be
used for computations and transformations. After matrixing the RGB values to
XYZ tristimulus values one arrives at the curves shown in the figure below. xyz
values are simply the responses from the imaginary primaries. XYZ tristimulus
values can be found in much the same way as LMS values except using the xyz
color matching functions instead of LMS responses as shown below

X =
ˆ
φ (λ)x (λ) dλ

Y =
ˆ
φ (λ) y (λ) dλ

Z =
ˆ
φ (λ) z (λ) dλ

XYZ tristimulus are convenient in that they are device independent, meaning
that they are based on human cone responses and thus in theory can describe a
color independent of any particular device. XYZ values can then be transformed
into any device primaries through the use of linear algebra. This is convenient
in that it allows for the description of a color throughout the system by serving
as an intermediate space.

Figure 2.4: xyz color matching functions

2.2 Observer Metamerism
One problem with the using the standard observer as the base for all chromatic-
ity and other calculations is that the standard observer is an average. It is
similar to illuminants in that no one actually has the response of the standard
observer, because it was based off of an average of the response of 19 people.
Every person sees the world slightly differently because everyone has slightly
different color matching functions. The standard observer does a good job at

7

approximating everyone’s color matching functions and has worked well up to
this point. This is an interesting issue in that everyone will see an image pre-
sented to them and assume that it is normal. It is only when they talk with
other observers about the image that they realize there is a discrepancy.

This is not an issue when viewing a real scene where all spectra is available to
the viewer because even if that particular observer’s color matching functions
are shifted from someone else’s, they are still responding to energy at every
wavelength as it is present in the real scene. The problem comes when they
are viewing projected images from a three channel system, which is showing a
metameric match of the original scene but for the standard observer. This has
not been a huge issue with imaging systems in the past because of the broad
primaries used in projectors and televisions today. The broader the primary
the less observer metamerism will be present because even if two peoples color
matching functions differ by say a simple wavelength offset, they will both have
energy from the source to respond to. With the shift to laser projectors, this
becomes more of an issue. Because laser projectors use very narrow primaries,
two people could have very different sensitivities to that primary if they have
different color matching functions. This is shown in the figure below. The
blue curve is the regular ybar function, and the orange curve is ybar shifted
by 10nm. As can be seen, the impact with a traditional projector primary is
not very severe, but the change in the response from the laser projector is quite
pronounced. This project is aimed at reducing observer metamerism.

Figure 2.5: Observer Metamerism on projection

8

2.3 Why Spectral Imaging?
If the cameras capture three channels, the displays show three channels, and
humans see with three channels one may ask why bother using more channels
for capture or display? Spectral imaging is advantageous for two main reasons.

First it captures more data from the original scene. Traditional three channel
cameras sample the available spectra of a scene with only three channels. This
means that right from the beginning of the imaging system much of the available
information in the scene is thrown away by using only three channels. For every
additional channel that the camera records, more information is being taken in
from the scene. So in the limit if infinite channels could be taken, one would
directly measure scene spectra. This is essentially what a spectrometer does,
but the challenge becomes measuring spectra at each pixel location in an image.

A spectral capture system is only physically different from a traditional RGB
system in that it has more than three primaries. A full spectral capture sys-
tem is not feasible in a video application which would involve taking images
at 1nm intervals of the same scene. A spectral estimation could be made from
three channels of information, but the estimation is greatly improved with the
addition of additional channels. By capturing the scene spectra, there is more
flexibility when processing the images. Trichromatic systems work by generat-
ing a metameric match to the scene spectra using three primaries as mentioned
previously, so there is generally some ambiguity to what the color is because
what it will ultimately look like is a function of the camera spectral sensitivities,
display primaries, display conditions, and observer differences. By switching to
spectra as an intermediate space, there is no ambiguity as to what the color
should ultimately be because every wavelength is accounted for.

Second, switching to spectral imaging reduces observer metamerism issues. If
a multispectral projection system is employed, then observer metamerism be-
comes less of an issue because an approximation of scene spectra is being pro-
jected on the screen. As mentioned before, traditional three channel projectors
work by projecting a metameric match to the color that is wanted. The prob-
lem comes in that the metameric match is for the standard observer, so if a
person does not have the response of the standard observer then the colors they
see might be different from what is desired. Reduction of observer metamerism
is one of the main objectives of spectral imaging and is analyzed more closely
throughout the paper.
It is also important to know how a spectral camera fits into the entire work flow.
A spectral camera by itself is relatively useless without a display that can show
what is captured by the camera. The diagram below shows the steps involved in
getting scene content shown spectrally on a screen. All steps up to and through
“conversion to spectral data” are included in this project. Considerations of a
spectral display are outside the scope of this project.

9

Figure 2.6: Overview of System

3 Design Objectives
There are a variety of ways to build a multispectral camera but for our design
there were some parameters that we wanted to achieve. The focus for this
project is on reproduction for motion picture and the applications in that field.
For that reason a spectral video camera is required that can capture at 24
frames per second (fps) or greater, as is standard for motion picture capture.
Raw uncompressed color information is desired as color compression will have
less information to work with when doing a spectral estimation. A list of all
specifications is given below, with many of them being characteristics that were
determined by the end user.

• Raw full color uncompressed 4:4:4 output from camera

◦ Need full color because we are trying to reproduce spectra, so un-
compressed color is needed

• Minimum of six primaries

• Video frame rates (>24fps)

• HD Resolution

◦ 1920x1080 ideal, but we settled for 1280x768 given restrictions on
the camera and frame rate

• Ability to change the filters

• Modular

◦ Wanted to be able to change parts as the design progressed

• Real time processing

◦ Ideally we wanted the spectral estimation to be done as each frame
was captured

10

4 Initial Design Concepts
Because the objective of this camera is to simply capture more than three chan-
nels of color information, there are many different ways to approach the design.
Below are several initial design concepts for the capture end of the camera.

4.1 Two color filter array cameras through beam splitter
This design option puts two identical color filter array cameras pointing through
a white light beam splitter. Different filters are then placed over each camera to
yield a total of six different channels. This approach is very feasible and because
of that the design that was decided on for actual implementation. This design,
while simple to implement is also limited in the ability to create independent
color channels. Because each camera already has an RGB color filter array, one
is limited to only cutting out sensitivity from those already present.

Pros

• compact / ergonomic

• Simple - very feasible

Cons

• limited channel options as each camera has a fixed RGB CFA

Figure 4.1: Two CFA cameras through a beam splitter

4.2 Three CFA cameras through a X prism
This design uses a X prism as would be found in any modern DLP projector.
This option is better than the previous design in that it affords nine channels of
information as opposed to six. The problem is that there is less flexibility in the
placement of those channels because of the forced splitting of red green and blue
light via the X prism, so no channel can be placed across those boundaries.

11

Pros

• Nine primaries - better spectral estimation

Cons

• requires three cameras

• Spectrum split into distinct red, green, blue segments - Can not have a
channel that crosses between the segments.

Figure 4.2: Three CFA Cameras through a X Prism

4.3 Six cameras through a X prism & beam splitters
This design improves on the previous one in that it allows slightly more flexibility
in channel placement by swapping out the CFA cameras for two monochrome
cameras for each red, green, and blue. This then is back to six primaries, but
they are full resolution. This option is more complicated than any previous
designs and the advantages of full resolution color channels versus the added
cost and complexity of the added cameras must be weighed.

Pros

• Flexible

Cons

• Six cameras required

12

• Very demanding on post processing

• Spectrum split into distinct red, green, blue segments

Figure 4.3: Six monochrome cameras through an X prism

4.4 Six monochrome cameras through beam splitters
This is by far the most flexible option of all the designs. it allows for each
channel to be completely customized. This however comes at the expense of
extreme light loss through a series of beam splitters and thus noise can become
a big issue with this system. The design places each camera at locations required
to maintain equivalent focal lengths to ensure that the are all in focus. This
option also incurs problems with getting six cameras properly aligned so that
they are all imaging the exact same scene.

Pros

• Most flexible option

• Completely customizable spectrum

• Full resolution color

Cons

13

• Low light to each camera - noise issues

• Six cameras required - computationally intensive

Figure 4.4: Six monochrome cameras through beam splitters

After examining all of the optical configurations described above, option 4.1
“Two color filter array cameras through beam splitter” was chosen as the design
to implement for the camera. This design was chosen based on the simplicity of
construction. Because of the timeline of this project the other options were not
feasible to build in the allotted time frame. Alignment of the cameras as well
as signal processing for more than two cameras became impractical. So while
some other designs had better performance characteristics, the simplicity of this
option outweighed potential performance gains from other configurations.

5 Post Processing Design Options
After the images are captured by the camera presented in the previous sec-
tion, they must be sent off to a processing block to perform image alignment
and spectral estimation before finally being stored in some file format. This
is shown in the figure below. Because the goal of this system is to operate in
close to real time, doing the full spectral estimation is impractical using most
techniques, but one technique using principle component analysis (PCA) can
work relatively quickly because it only involves the use of one matrix. Before
the spectral estimation is done though, the images need to be aligned. Digital
alignment is required because of a lack of awesome hardware to properly align
the cameras. If the cameras could be mounted on 5-axis rigs that allowed for
meticulous alignment then a digital alignment would not be necessary. This
hardware was not available during the construction of the camera and thus a

14

digital method has to be used.

Figure 5.1: Overview of Signal Processing Steps

5.1 Determination of capable hardware
There are several ways to do this post processing, and because the system will
deal with six channels of information, equipment that can handle the required
data rate is required. The equation below shows how to calculate the required
bits per second required by the system to input the data to operate in real time.

Resolution×FrameRate× Bits

P ixel
×NumberOfChannels = Total

Bits

Second

For example, a 720p image running at 24fps, with 8bits/pixel for each channel
in a six channel system would result in a total of 1.06GB/s. That amount of
data needs some very fast hardware to be able to handle that.

(1280× 720)× 24× 8× 6 = 1.06
GB

s

There are several viable options for handling the data. One option is to sim-
ply feed the camera signals into a PC and then do all the post processing in
software such as labVIEW or C++. This requires efficient code to allow for a
throughput that is close to the desired data rate. Another option is to use a
field programmable gate array (FPGA) to do all of the input and processing of
the data in one chip. Both options are capable of handling the data and will
produce similarly capable systems. Implementation on a PC will allow for more
flexibility in the development of the image processing pipeline, while the FPGA
solution will result in a more compact easy to use solution.

5.2 Field Programmable Gate Array (FPGA)
An FPGA based solution would handle everything on board a dedicated FPGA
chip. The inputs to this system would have to be either GigE cameras or Cam-
eraLink cameras with CameraLink being the preferred connection type because

15

those are the only two input types easily connected and dealt with by most
FPGA’s. The camera signals would be fed into a DS90CR288A chip or similar,
which converts to convert the data bits from the camera into data streams that
the FPGA can handle. From there the operation would be fairly straightforward
with the matrix operation to perform the spectral estimation being hard coded
into the FPGA.

The main challenge with this approach is the storage of the data after the
spectral estimation. Because the chip would be standalone hardware, external
storage would need to be added, and because of the amount of data coming
off of the chip the storage would need to be extremely fast. Solutions to this
would be to buffer it through sRAM then out to slower media such as hard
drives. Other options would be to connect SSDs to the system for storage. Also
depending on the exact data rate needed, PCIe or GigE outputs could just be
installed.

5.3 PC with software
This solution involves using a PC equipped with the required input cards to
capture from the cameras. This card will get the images from the camera and
then send them into the computer. Software of some kind is then required to
processes the images. Any number of software packages could handle this task.
Matlab, C++ running openCV, labVIEW, and a host of others. C++ is the
most attractive option due to its efficient utilization of computer resources. This
allows for the images to be processed faster and the camera could operate at
closer to real time. This option is also incredibly flexible as C++ can be used
to implement any algorithm.

One advantage of this method is the ease of adjusting the spectral estima-
tion algorithm. Here it would be relatively straightforward and would involve
changing just that part of the code, where as with the FPGA, the entire code
would have to be reloaded onto the chip. While an FPGA can be reloaded rel-
atively easily, it requires taking the camera assembly apart, making this option
more flexible than an FPGA solution.

5.4 Implementation Choice
The final choice for building the camera was to us a PC implementation. This
was done for several reasons. First the cameras that were obtained were the
Imaging Source DFK 41BF02 cameras which had firewire 400 outputs. This
camera choice eliminated the FPGA option right away. PC implementation was
also more flexible and easier to work with and change as the project progressed.

16

6 Algorithm Details
The following sections go into details of the blocks in the signal processing
pipeline from capture out to file storage.

6.1 Image Registration Algorithm
This technique is similar to what is done for digital image stabilization. In
image stabilization algorithms, the current image is compared to the previous
image in time. In image alignment, the current image is compared to the image
from the other camera and moved accordingly. The comparison can be done a
variety of ways and various techniques will need to be evaluated before deciding
on an option. Edge detection could be done first to accentuate the differences in
the image. Local areas chosen at random could also be evaluated to determine
which way the image needs to be translated.

Because digital image registration would not be needed if the cameras could
be perfectly aligned, it can be assumed that the amount of change needed will
be small. Also to speed up the camera operation, the actual determination of
how much to move the image can be done once for the camera and then simply
applied to each frame. This option is also preferred in that if the algorithm
was trying to determine registration between the two images for every frame,
it could mistake motion in the frame for sensor alignment and produce strange
results.

Since the algorithm only needs to be run once it can take a very long time
to run and produce really good results. ITK toolbox was used to do the image
registration. ITK is an opensource library for C++ that has some very good al-
gorithms for doing image registration. The method that was chosen will adjust
x and y translation, x and y scale factors, and rotation. The algorithm operates
by performing minimization of errors. Basically it will keep one image the same
and move the other one to match it. It has a maximum iteration limit of 300
and each time it will adjust parameters and then check and see if the pixels
match, it will then change something else and check again. It does this over and
over until it has determined that the images match as well as they can. At this
point it spits out a text file to be read in by the rest of the program with what
changes it made, namely xy translation, xy scale, and rotation.

The figure below shows the alignment of two test images. As can be seen,
there is not much movement needed because of the care taken in trying to
align the images as best as possible. It can also be seen that the moved image
has a black border on the bottom and right side. This is one disadvantage of
digital image registration. The image must be cropped to accommodate for the
movement of the image.

17

(a) Image kept still

(b) Image to be moved

(c) Result of moving

Figure 6.1: Image registration

18

6.2 Spectral Estimation Algorithm (Training)
The spectral estimation algorithm consists of two main steps to get to scene
spectra: (1) generate principle component values (2) multiply eigen vectors by
each principle component value to get an estimation of spectra. This is often
referred to as training the camera, basically you are training the camera what
to do when it sees different spectra.

6.2.1 Determine Eigen Vectors

These eigen vectors are found from a set of measured spectra. In our case we
used a ColorChecker DC target, which has 240 different color patches. Those
240 spectra are then analyzed using principle component analysis. Basically
the 31 element vector responsible for the majority of the change in most of the
patches is found (31 because of the use of 10nm increments from 400-700nm).
A vector responsible for the next most deviation is then found, and so on down
to six vectors. It so happens that the first vector is responsible for about 70%
of the change, the second for 20%, the third for 5%, etc. So once you get six
vectors, one can reproduce those spectra very accurately. The calculated eigen
vectors are shown in the figure below. It can be seen that the first vector is
essentially an average of the data, then the mode of the vector increases from
there, with the second vector being bi-modal, third being tri-modal, and so on.

Figure 6.2: Eigen Vectors for the ColorChecker DC

These vectors when properly multiplied will allow for the recreation of any
of those 240 measured spectra. It works very well with the worst estimation
shown in the figure below, which is still very good.

19

Figure 6.3: Worst PCA recreation of spectra

6.2.2 Determine Principle Component Values

The camera gives out six numbers: R1, G1, B1, R2, G2, B2,as determined by
the camera spectral sensitivity. A matrix then needs to be found to go from
those camera values to the principle component values. This is a 6x6 matrix
because each principle component value is determined from all six camera values.
A starting matrix can be found by doing simple matrix math. This matrix is
statistically the best matrix to go between the data sets, but it might not be
the most visually relevant

Figure 6.4: Finding the PC matrix

20

This matrix was optimized to reduce observer metamerism as best as pos-
sible. This was done by taking simulated camera RGBRGB signals (simulated
with spectral sensitivities + noise) multiplying them by the matrix to get prin-
ciple component values, then estimating spectra with the eigen vectors. This
estimated spectra is then viewed by six simulated observers with different color
matching functions. These observers view both the recreated spectra and the
actual spectra of the patch and a deltaE between the patches is calculated. This
optimization is run until the worst observer’s dE is as good as it can be.

6.2.3 Camera Training Considerations

Training the camera is basically the derivation of the matrix done in the pre-
vious section. There are a variety of variables involved in the process though:
patches use, illuminant used, and filter pair used. Changing any of these options
will change how well the spectral estimation works. Basically the camera is only
as good as that matrix. As that matrix cannot predict spectra equally well for
all patches, some colors suffer. Because of this the choice of training patches is
pretty important. For our purposes, a ColorChecker DC target was an easy way
to get a lot of colors measured at once. It is not known how well the camera
would actually reproduce real world colors though. If spectra available in the
real world is not similar to those that the camera is trained on then the spectral
prediction will not be very accurate.

The camera will work very well on those exact patches and will then inter-
polate between what it has been trained on to estimate other spectra. So if the
color you want to measure is nothing close to what has been trained then there
is a risk that the estimation will not be very good. This is why the illuminant
changes the training, because changing the illuminant will change the spectra
that the camera sees because the source times the reflectance of the object is
what is recorded by the camera.

7 Camera Characterization / Filter Selection
The cameras used in the design need to have some measurements done on them,
namely spectral sensitivity, linearity, and noise/speed. Spectral sensitivity is
required because the native sensitivity of the camera is needed to (1) determine
what filters to choose and (2) ultimately determine the spectral sensitivity of all
six channels which is needed to do the spectral estimation. Linearity is required
to ensure that the camera is operating in a linear mode, with a gamma of 1.0.
This is needed because the spectral estimation algorithm expects linear signals,
so if a gamma encoded signal is sent to the algorithm, useless results will be
output.

21

7.1 Linearity
Linearity is tested by providing incrementally greater exposure to the camera
and then plotting output code value versus linear exposure values. If the plot
is a linear function then the system is linear and it can be assumed that it
is operating with a gamma of 1.0, otherwise the camera is not linear. The
exposure can be varied by changing either the exposure time or the amount of
light entering the lens through the use of neutral density filters. The method
chosen was to alter the exposure time while keeping the illumination constant.
The image must be of a neutral uniform field. A region of interest in the image
that is uniform is then identified and averaged to get an average value for the
exposure level. The figure below shows the results for the Imaging Source DFK
31BF03 operating at a setting of gamma = 1.0.

Figure 7.1: Linearity plot at gamma of 1.0

7.2 Spectral Sensitivity
Spectral sensitivity is measured using a monochrometer. A monochrometer
is a device that can output light at a specific wavelength using mirrors and
gratings. The camera being measured is placed at the exit of the spectrometer
and arranged such that the output from the spectrometer is in the center of the
image. The spectrometer is then cycled through the visible range starting at
380nm and going out to 720nm in 5nm intervals. The power of the light is also
adjusted and measured for each measurement. This is used to normalize the
the response of the camera and also ensures that saturation is not reached. The
equation for spectral sensitivity in code value per energy is:

CVwavelength

Radiancewavelength

This calculation is done for every measurement and for each channel. The
results are then plotted as CV/Radiance as a function of wavelength. The

22

images below show one image taken by the camera at 555nm and the spectral
sensitivity.

Figure 7.2: Image taken at 555nm

Figure 7.3: Spectral Sensitivity of Imaging Source DFK 31BF03

23

7.2.1 Filter Pair Selection

The filter pair is selected based off of the fact that changing the filter pair will
alter the RGBRGB signals output from the camera for each patch. These are
then sent through the matrix to convert to principle component values and pre-
dict spectra. This spectra is then compared to the original spectra for each
patch. various filter pairs are run through this process and it can be determined
which filter pair predicts the spectra for all patches the best. It is also the
case that different filter pairs might be better for different illuminants. For our
purposes, we were shooting a ColorChecker DC target indoors, so we optimized
the system for tungsten lighting.

After running this optimization, the filter pair that was selected were Schott
Filters, VG9 and BG-40. The transmission profile for these lenses are shown
below.

(a) Schott BG-40

(b) Schott VG9

Figure 7.4: Selected Filter Pair Transmissions

24

Concatenating the filter pairs with the camera spectral sensitivities yields
all six channels of spectral sensitivity for the camera.

Figure 7.5: Total Camera Spectral Sensitivity

7.3 Verification of Simulations
The filter pair selection and training matrix derivations were both done using a
simulated camera. This is done by simply taking the measured camera spectral
sensitivities and multiplying them with the scene spectra and the filter pairs.
Because so much of the camera was designed via simulations, the accuracy
of those simulations had to be verified. This was done by simply taking a
picture of the ColorChecker DC target without any filters. The measured RGB
values were recorded for every patch on the chart. The simulated camera then
“took a picture” of those same patches in its simulation. The error between
those two measurements was then calculated. The figure below shows both
the absolute and percent errors between the simulations and the actual camera
performance for the entire ColorChecker DC chart. The absolute error shows
a vertical dependence, which was attributed to lighting non-uniformity. The
percent error shows very large spikes of error in the dark patches which is to be
expected because of the small magnitude of the patches.

25

Figure 7.6: Absolute Error

Figure 7.7: Percent Error

What was found by these measurements was the need to simulate a noise
floor in the camera. The simulated camera was an ideal camera up to this point
and as such did not have any noise. These results showed that in all of the
patches there was a small offset. This offset could be attributed to noise in
the camera and thus was added to the simulation to better represent the real
world camera. The need for the noise floor was especially prevalent in a plot
of just gray scale values in the center of the patch. Percent error decreased
with increasing luminance for reasons described earlier, but the absolute error
remained fairly constant across all luminance levels - a dead giveaway of a noise
floor.

26

Figure 7.8: Gray scale Error Plots

8 Camera Design Implementation
The general design of the camera changed as the project progressed. Initially it
was thought that focusing an image through an objective lens onto each sensor
directly would be too difficult to do without extra equipment. Because of this
the original design involved focusing the scene onto a diffuser screen and then
using another lens on each camera to take a picture of the screen. This method
was thought to make alignment of the images easier but was inferior to simply
focusing onto the camera sensors in that the diffuser adds grain to the image
and also wastes a lot of light making the image on the cameras much darker
and noisier. This setup and the images created from it are shown in the figure
below.

27

Figure 8.1: Original Camera setup

(a) Camera1 (b) Camera2

Figure 8.2: Images from old setup

As can be seen by the images created by this setup, the image quality was
very poor. The light loss from the camera required setting the gain to its high-
est setting making a very noisy image. But more importantly than that, the
images had a severe hue shift going from left to right across the image. This
obviously made the camera unusable for accurate color measurements. These
results were the source of some concern, but it was later determined that the
cause of the issue was the combination of the beamsplitter and the lenses used
on each camera. The beamsplitter being used was polarizing so it was thought
that there was some coating on the lenses being used that caused the hue shift.

28

Once the lenses were isolated as the problem, we had to try and image with-
out the use of those lenses. Surprisingly we got fantastic results. A Hassleblad
lens was used as the objective lens for its increased working distance. The dis-
tance from the lens to the imaging plane on a Hassleblad camera is a few inches,
which was needed to fit all the components in. The only issue that resulted from
doing that was that the image was very zoomed in. a 50mm lens was used but
the images that resulted are shown below. Because a Hassleblad is a medium
format camera, the imaging plane is 3x3inches, much larger than the 1/3 inch
chip in our cameras. All this did was to create a very cropped image, but the
images produced by this setup were much superior. The new setup and it’s
images are shown below.

Figure 8.3: New setup

(a) Camera1 (b) Camera2

Figure 8.4: Images from new setup

29

9 Image Processing Implementation

9.1 How it was done
The implementation of the post processing steps was done using windows and
C++. Visual Studio 2010 was used as the development environment. Imaging
Source APIs were used to control the cameras and get images into the computer.
OpenCV was then used to operate on each video frame and do the spectral
estimation. As mentioned earlier ITK was used to do the image registration.
The diagram below shows the steps involved in getting a spectral image out
of our system. Basically the training matrix is read in from a text file first,
and then the registration is run when the camera is first setup. After that one
records a video file. Then the processing is done on the already captured video
file offline. Processing takes on the order of 10seconds per frame, which is much
larger than the .033 which would be required for real time operation, so that
metric was not reached.

Figure 9.1: Processing Steps

9.2 Saving the Data
The data that was decided to be stored were the six principle component values.
This was done for file size considerations. It would not have been hard to mul-
tiply each principle component value by the eigen vectors to recreate spectra
for each pixel, but then there is 6x the data to store for each pixel. This makes
the file sized unreasonable to work with, so instead the eigen vectors are stored
separately and multiplied later. The file size per frame is 81MB, this would
jump to 412MB per frame if we stored spectra per frame. 15GB of data per
second is simply too big to work with. The data is stored in an XML file which
was chosen for its universality. Because the data at that point is not image data,
and image container does not make sense, and the PC values are not integers,
they are quite complex float values, so some encoding would have to be found.
Each XML file stores the size of the frame in its first two tags and then stores
the principle components after that. It is stored as a 1D array, in the order

Pixel1 Pixel2 Pixel3
E1 E2 E3 E4 E5 E6 E1 E2 E3 E4 E5 E6 E1 E2 E3 E4 E5 E6

So the size of the image is used to turn the 1D array into the 2D image array.

30

10 Using the SpectraCam 5000 Software
Below is a screen capture of the GUI of SpectraCam 5000.

Figure 10.1: SpectraCam 5000 Interface

31

Figure 10.2: Camera Select Screen

To launch the software currently one must open the solution file in Visual
Studio 2010, this can be done by navigating to C:\Users\cam2824\Documents\IC
Imaging Control 3.2\samples\vc10\VCD Simple Property and clicking on the
VCD Simple Property.sln file. Once the project starts simply click on the green
arrow at the top of the program to run the software. This can conceivably be
built into a standalone .exe program but that was not realized.

Once the program launches a dialog should come up asking what camera
you want to select shown in figure 10.2. There should be two options, choose
one and click enter, then the dialog will come up again and choose the other
camera. After this you will get the interface shown in figure 10.1. Live view
images should be shown of the two cameras automatically, with one of the being
backwards due to the beamsplitter. You have options to change the gain and
brightness of each camera separately to get the maximum signal possible. The
gamma can be changed but should be left at 10, equivalent to a 1.0 gamma.
blue and red white balance are tied to both cameras. 50 50 is a good starting
value for this. On the right side of the interface is the meat of it. filenames
can be specified for each camera. DO NOT put an extension on the name you
put in this box. The software will do this automatically depending on what you
capture. The directory is the file path to where you want to store the file.

The start capture and stop capture buttons start and stop the capture of
a video file respectively. The indicator to the right of the stop capture but-
ton will tell if you are currently recording or not. The Calibrate registration
button will take the image currently displayed in the live view and analyze it
for registration. This will take some time to complete (2-3 minutes). When it
finished you will have three images in the location specified by the directory.
CalImg1.bmp, CalImg2.bmp, CalOut.bmp. CalImg1.bmp is the image that is

32

not moved, CalImg2.bmp is the image that was moved, and CalOut.bmp is the
image with the transformations applied. These images are used to verify that
the registration worked properly. The more important part is that it outputs
a file named Stats.txt which contains all of the transformations that is applied.
This file is what allows the registration to only be run once.

The next button is the Spectrize (Process) Button. This will perform the
calculations to get principle component values and store them out to .XML files.
Before doing this, the training matrix and offset values must be saved to a .txt
file in the order: The top of the figure shows the six offset values and the 6x6
matrix for the order of R1, G1, B1, R2, G2, B2

33

O_R1 O_G1 O_B1 O_R2 O_G2 O_B1
V1 V2 V3 V4 V5 V6
V7 V8 V9 V10 V11 V12
V13 V14 V15 V16 V17 V18
V19 V20 V21 V22 V23 V24
V25 V26 V27 V28 V29 V30
V31 V32 V33 V34 V35 V36

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
V32
V33
V34
V35
V36

O_R1
O_G1
O_B1
O_R2
O_G2
O_B2

34

Before running the Spectrize process, ensure that there is a file called “Spec-
tra” in your specified directory. This is where the files will be stored. One XML
file is generated for each frame of the videos specified in the Filename Camera1
and Filename Camera2 boxes.

11 System Performance
So how well does the camera work? After the training matrix was optimized
and put into the camera, images were taken and analyzed. The images taken
were of the ColorChecker DC target mentioned earlier. The camera was also
trained on these patches, so optimal performance is expected for these patches.

11.1 Comparison for all patches
The figures below show RMS error and deltaE 94 errors for all 240 patches. The
RMSE plot shows both the spectral estimation errors for the camera as well as
the straight PCA error. So the red line in the RMSE plot is as good as the
camera will ever do. It can be seen that there are some patches that are higher
than we would like, but on the whole it worked pretty well. Some of the deltaE
errors are up around 3 which is a bit high but still not very noticeable.

Figure 11.1: RMSE Error Comparison - CCDC Target

35

Figure 11.2: DeltaE Error - CCDC Target

11.2 Nine Best/Worst
These plots show the nine best and worst patches for both deltaE and RMSE.
It can be seen that these two metrics do not say the same patches are the best.
RMSE treats all wavelengths equally in its treatment so it needs all wavelengths
from 400 to 700 to match very well with the original spectra. It is also absolute
RMSE so it prefers darker patches. DeltaE is weighted by the human sensitiv-
ity functions because it is based on XYZ tristimulus values. This means that
is places more importance on wavelengths that humans are more sensitive to,
namely colors in the green region of the spectrum (500-600nm). This can be
seen in the patches that the delta E was the best on. Some of the long wave-
lengths deviate pretty far, but the colors in the middle wavelengths match very
well.
One other thing to note is how when the spectra deviates it is in the longer
wavelengths. This is because in those wavelengths the sensitivity of the camera
is very low or non existent. This can be seen by checking the spectral sensitivity
curves mentioned earlier. But the curves begin to deviate in the high 600nm
range. This is about when the sensitivity of the camera is significantly dimin-
ished. The camera will not be able to predict spectra well for regions that it is
not sensitive. That is one problem with use of filters over cameras, sensitivity
can only be taken away, it can’t be added.

36

Figure 11.3: RMSE - Nine Best

Figure 11.4: RMSE - Nine Worst

37

Figure 11.5: deltaE - Nine Best

Figure 11.6: deltaE - Nine Worst

11.3 Version 2.0
If version 2.0 of this camera were built, there are several things that would be
changed.

38

The first is to make a more robust casing for the camera. The optical design
as of now is quite good and is producing excellent image quality. The issue
is that the camera is locked to an optical bench so testing of outside spectra
is impossible. The first thing to be done in version 2.0 would be to build
an aluminum casing for the camera that allowed it to be moved around and
really tested. The actual footprint of the camera is small enough to make to
portable (ignoring the required PC computer). Another lens with equivalent
working distance but designed for smaller sensors might also be investigated.
File format could also be looked at more closely to see if a better file storage
solution exists. This would most likely come later when what processing will be
done with the signals for output do a display is identified. So for now a flexible
XML file format is a good choice to allow for a variety of processing choices and
software.

12 Conclusion
In conclusion, the camera was built using two three channel cameras with dif-
ferent filters over each. This generated six total channels of information to
work with. Processing was done using a PC and each image was saved to an
XML file saving the six principle component values for each pixel. These prin-
ciple components could then be multiplied by eigen vectors to reproduce scene
spectra.

39

References
[et al.(a)] Masahiro Yamaguchi et al. Color image reproduction based on the

multispectral and multiprimary imaging. Technical report, Imaging Science
and Engineering Laboratory, a.

[et al.(b)] Massahiro Yamaguchi et al. High-fidelity video and still-image com-
munication based on spectral information. Technical report, Natural Vision,
b.

[et al.(c)] R Iwama et al. Real-time multispectral and multiprimary video sys-
tem. Technical report, Tokyo Institute of Technology, c.

[M. J. vrhel(1992)] H. J. Trussell M. J. vrhel. Color correction using principal
components. Technical report, North Carolina State, 1992.

[Reinhard(2008)] Erik Reinhard. Color Imaging - Fundamentals and Applica-
tions. A K Peters Ltd., 2008.

40

