
1

Utilizing Neural Networks for the Correction of
Motion Capture Data

Liam Lynch, Rochester Institute of Technology

Abstract—Single-camera motion capture devices offer a cheap
method of obtaining mocap data at the cost of frequent motion
artifacts in the rendered product. To accurately represent natural
human motion in mocap data, these artifacts must be removed
through the process of hand-cleaning. This process can be
extremely tedious, requiring mocap artists to fix noisy data frame
by frame. The goal of this project is to offer an alternative to
hand-cleaning motion capture data: utilizing neural networks
for the removal of common motion artifacts in joint rotational
data. With two networks for gap filling and noise removal, noisy
rotational data can be transformed into smooth, clean motion
curves that match the intensity and structure of natural motion.

I. INTRODUCTION

MOTION capture data consists of rotational information
for a skeleton of designated joints on the human body.

For every frame of captured motion, there are XYZ rotation
values collected for each of these designated joints. Mocap
data relies on the use of a base position from which these
rotational values are established, such as a T-pose. As joint
rotation deviates from this base pose, these XYZ values change
in correlation with the motion of the subject. For this project,
we will be focusing strictly on the correction of elbow joint
rotation. Elbow joint rotational data is formatted as follows:
for each frame of captured motion, there is a single joint
angle value representing the angle formed between the elbow’s
current position, and its original T-pose position (Fig. 1A).

Motion capture data is contained within text-based AMC
and ASF Acclaim files. The ASF file contains information
about the skeleton, such as base pose, offset information,
and degrees of freedom (DOF) for each joint. With the DOF
values, the ASF asserts the planes within which the joint is
allowed to rotate. The AMC file contains the rotational data
for each joint across every frame of motion.

Single camera motion capture systems are used to capture
movement from a single visual perspective. Therefore, errors
in this data often result from a specific joint being blocked
or occluded from the view of the camera. Occlusion can
cause gaps within the motion capture data – series of frames
in which rotational data is not accurately captured by the
device and software. Joint position and rotational data are
approximated from the RGB or depth-based images captured
by the single camera. Subsequently, the skeletal rig is fitted
to the motion of the subject present within this sequence of
images. Skeleton fitting attempts to determine joint positions
from areas of the depth image that correspond to features on
the human body. Though the assignment of the skeleton is
often successful, slight fluctuations in the approximated joint

rotations can lead to shaking and instability in the rendered
motion. These fluctuations are referred to as jitter.

Typically, corrupt mocap data is hand cleaned. This process
requires the mocap artist to examine the rotation curves created
in each individual XYZ plane over all frames of motion. As
the artist recognizes errors in the motion capture data, they
can restructure the rotational curves through the elimination of
keyframes, as well as the application of smoothing functions.
The accuracy of motion relies on the artist’s interpretation
of the data. Smoothing functions are applied to smooth the
rotation in areas where key frames are no longer present. Using
neural networks, we intend to eliminate the errors associated
with jitter and occlusion in order to limit the effort required to
clean mocap data. Ideally, our networks will transform corrupt
rotational curves into clean data indicative of the intensity and
smoothness of natural motion. Examples of clean and corrupt
joint angle data can be witnessed in Fig. 1B.

II. IMPLEMENTATION

A. Neural Network Fundamentals

The intention of a neural network is to take a set of input
data and approximate an output. Networks consist of layers.
Each layer consists of nodes. Within the input layer each
node will correlate to a specific input value that is supplied
to the network. Similarly, the output layer nodes correspond
to each approximated output value. Between the input and
output layers are the hidden layers. These middle layers are
responsible for the rigorous calculations that transform an
input into an output. Each hidden layer node is associated
with a weight and bias. Weights are values that are multiplied
to a node input, while biases are added to the node input –
similar to a typical linear equation, in which the weight is the
slope and bias is the y-intercept. The full hidden layer node
output is comprised of the summation of (weight*input+bias)
values for all inputs connected to that node, with a transfer
function applied to this summation. The transfer function is
used to process an input and supply an adjusted output. One
example that is frequently used within our networks is the tan-
sigmoid transfer function, which transforms an input into an
output value ranging from -1 to 1.

When a network is trained, we supply it with both a known
input and known output. Networks are trained in cycles, or
epochs. With each epoch, the known inputs are passed through
the network until an approximated output is achieved. This
approximated output is then compared to the known output
data. If there is error between the approximated and known
outputs, the weights and biases of the network are adjusted



2

Fig. 1. The above figure demonstrates typical elbow joint movement. Figure 1A demonstrates the joint angle formed between the joint in motion and the
base pose, while 1B depicts what clean and corrupt joint angle curves look like for a typical walk cycle.

to allow for a more accurate estimation of the output. This
process is repeated for each epoch.

B. Creation of Simulated Data

For our case, neural networks offer an effective method for
approximating joint data. We can supply sets of joint rotational
values as the input for our network. In training, corrupt input
joint angles can be compared against a clean ideal, with
which it can approximate the weights and biases necessary
to obtain clean joint angle values. Ideally, our training input
data should consist of corrupt elbow joint data captured with
the Kinect and passed through iPi Soft, while our training
output should be hand-corrected joint data provided by a
mocap artist. However, a similar result can be accomplished
through the use of simulated data. Simulated gaps and jitter
are applied to pre-cleaned rotational curves to mimic the
structure and errors of typical markerless data. Our clean
rotation data originates from AMC files taken from the CMU
Motion Capture Library containing data captured using Vicon
mocap gear, sampled from over 20 walk cycles at 120fps.
These AMC files contain data accurate to human motion and
will represent clean and ideal rotation values. When we pass
altered or corrupt rotation values to the network series, we
should expect the final output to reflect the structural attributes
of this data: smooth elbow rotation accurate to lifelike walking
motion. From this ideal, we work backwards in applying the
various motion artifacts. For the simulation of jitter, noise
values are randomly sampled from a Gaussian distribution

generated using the average standard deviation associated with
our corrupt Kinect data. Noise values are added or subtracted
at each frame of rotation to create the jagged curve structure
typically associated with jitter. Subsequently, gap lengths are
sampled from an exponential distribution with a specified
maximum. In this distribution, there is a higher likelihood
that shorter gap lengths will occur over higher gap lengths.
Furthermore, each frame of rotation has a 10-percent chance
of starting a gap. Next, all gaps undergo linear interpolation
from the starting point to ending point. Because the goal of
our network is to interpret Kinect motion data at 30fps, the
120fps jitter-and-gap-applied data is downsampled to 30fps.
This downsampling is also performed on the clean ideal joint
curves. Fig. 2 details this process of intentionally corrupting
joint curves for the creation of our simulated data.

Furthermore, all input training data was further augmented
to allow for our networks to recognize greater variation in
the input. In this process, 18 augmentations were constructed
per walk cycle. Examples of these augmentations include
reduced or increased jitter (0.5x to 2.0x), as well as variation
in maximum gap length (0 to 100 frames). Variation in gap
placement was also considered, particularly for instances in
which gaps are more likely to occur at the top, middle, and
bottom of arm movement.

C. Architecture and Training

The gap filling network is designed to recognize any frames
of missing joint data and approximate new values for each



3

Fig. 2. The figure demonstrates each step for the application of jitter and gaps for the creation of simulated data.

of these frames. Based on a sampling approach described
by P. Chaudhuri et al. in ”A Deep Recurrent Framework for
Cleaning Motion Capture Data,” the simulated data input is
restructured into 9 sample points: a current frame, 4 preceding
frames, and 4 subsequent frames. Additionally, these 9 total
sample points are each spaced by four frames. In adding
this spacing to our input, we allow the network to better
recognize the structure of the joint angle curve in the area
local to the current frame, rather than the structure of the
noise between the adjacent frames. To improve the gap filling
network’s ability to approximate values in the absence of data,
we provide an additional input related to the joint data of the
opposite arm. Therefore, the complete input for the network
is comprised of two sets of 9 sample points, with one set
containing 9 joint values for the left elbow, and the other
set containing 9 values for the right elbow. Furthermore, the
output of this network will be a single approximated joint
value associated with the current frame. Two hidden layers
for the gap filling network are each comprised of 31 nodes,
utilizing tan-sigmoid transfer functions. [1]

For training the gap filling network, input was created from
the simulated gap-applied and jitter noise-applied data for 20
walk cycles. The elbow joint data for each walk cycle was

restructured to contain the required left-right pairs of joint
angle sample points, with pairs generated for each frame in a
walk cycle – excluding clipping of 16 frames at the beginning
and end of each cycle. Separately, the training output was
supplied in the form of individual joint values correlating with
the current frame of the left input set. The network is designed
to utilize joint correlation to solve for a single joint value in
one of the two elbow motions. Therefore, we will be supplying
the network with sample points from both the right and left
elbows, but we expect to receive an output specific to only
the left elbow. The following examples relate specifically to
this input-output case. Additionally, because this network is
designed to recognize and account for gap filling only, the
training output was collected from simulated data with only
jitter noise applied (utilizing the same set of walk cycles). This
network was trained over 250 epochs, utilizing the resilient
backpropagation training function for pattern recognition.

The noise removal network is intended to interpret the
output of the gap filling network and provide joint rotation
values indicative of smooth and natural human motion. It
is the output of this network that will be recognized as the
final corrected motion. The output of the preceding network
is restructured into sets of 9 sample points: a current frame,



4

Fig. 3. The above figure demonstrates the network architecture for both the
gap filling network and noise removal network.

4 preceding frames, and 4 subsequent frames. Unlike the
previous network, there is only one set of sample points related
to the specific elbow joint that requires correction – in our case,
the left elbow. Additionally, there is no spacing between any
of the sample points. This change in spacing aims to shift the
focus of the second network to the noise profile of our data.
The network may now recognize the change in joint rotation
between adjacent frames of motion. The output of the noise
removal network is a single frame of clean data associated with
the current frame of the input. Only a single hidden layer of
size 10 is utilized for this network.

In training the noise removal network, the gap-filled output
of the previous network was restructured to sets of 9 adjacent
sample points for each frame of the 20 original walk cycles
– once again, excluding clipping of now 20 frames at the
beginning and end of each cycle. The training output for this
network was comprised of the original pre-cleaned data col-
lected from the CMU library, downsampled to 30fps. Finally,
this network was trained using Scaled Conjugate Gradient
Backpropagation for plot fitting.

III. RESULTS

A. Simulated Data

In supplying the networks with simulated data containing
sizable gaps and a high degree of jitter, one may recog-
nize that the network is successfully able to render cleaned
joint data with the characteristics of natural motion. Fig. 4A
demonstrates an instance in which extremely corrupt data
was passed to the network. Though the network-approximated
joint angle values do not perfectly match the intensity of the
original pre-corrupted joint motion, the approximated curve
still demonstrates a smooth and rounded peak. Additionally,
in the areas of high slope – particularly the points at which
the elbow is in mid swing – the desired slope intensity is
matched by the network, resulting in elbow rotation speed
and intensity that is accurate to natural motion. Similarly, as
demonstrated in Fig. 4B, the network output demonstrates a
significant improvement in structure over the corrupt data.
While the corrupt data appears flat at its peak (indicating a

Fig. 4. The above figure demonstrates the corrupt motion, network output,
and ideal clean motion for simulated test data. In this instance, the network
output is intended to be approximated clean joint data for the left elbow. Each
plot represents an independent test case.

point at which the elbow had become occluded), the network
output renders a relatively smooth curve. Even in areas where
the network output fails to match the uncorrupt ideal, the
rendered motion is still void of jitter. The final network output
is mostly smooth, albeit with slight bumps in the region of
backswing (frames 20-30).

Unfortunately, the network approximated data often does
not effectively render the subtle characteristics of the ideal
joint curves. For example, Fig. 4A demonstrates how the
networks fail to render the slight bounce of the elbow (indi-
cated by the smaller peak between frames 5 and 20). Instead,
because the region of this subtle bounce is encompassed by a
gap in the corrupt data, the gap network interprets this bounce
as the end point of a major elbow motion, creating a gradual
slope in place of the bounce. This causes the first 20 frames of
elbow motion to appear slower than intended. Additionally, the
rendered output for simulated data often struggles to match the
maximum and minimum of the ideal motion for major elbow
rotation. For example, Fig. 4A depicts a 10-degree disparity
between the maximum of the network-rendered motion and the
ideal uncorrupt motion. Similarly, the minima are also dragged
down to slightly lower rotation values, though this magnitude
of this difference is much lower than that at the maxima.



5

Fig. 5. The above figure demonstrates the corrupt motion, gap network output, and full gap filling and noise removal output for Kinect-captured elbow joint
data. In this instance, the network output is intended to be approximated clean joint data for the left elbow. Each plot represents an independent test cases.

B. Kinect-captured Data

For testing, the Microsoft Xbox 360 Kinect was used
in conjunction with iPi Soft for the capture of markerless
test data. The Kinect captures two images: a typical 8-bit
RGB image and infrared depth-based image. Both images
are passed to iPi Soft, which approximates the location of
human body parts from the subject’s position in the depth
image. Subsequently, joints from a specified skeletal rig are
transformed to match the locations of these body parts in a 3D
space. Joint labels are interpreted from the skeleton file and
assigned to the proper body part. Finally, iPi Soft attempts to
estimate joint rotation based on changes in the depth image
between each frame of captured video (30fps). [2]

Unlike the simulated data, the network output for the
Kinect-captured input surprisingly retains many of the positive
aspects of the corrupt input. For example, while the simulated
input may have led to issues with slope intensity, the Kinect-
captured input does not include undesired deviation in slopes.
Figure 5 depicts the network-corrected motion data for multi-
ple Kinect-captured input curves. As demonstrated in Fig. 5B,
C, and D, the slope of the network output – particularly the

areas in which the elbow motion is in mid-swing – is very
similar to that of the Kinect-captured data. In these instances,
it is reasonable to believe that the network did not interpret
any issues with these slope intensities (no gaps or recognizable
jitter), and therefore did not make any unnecessary corrections.
Separately, when jitter could be found on a slope, as with
Fig. 5B (frames 27-33), the network successfully removed
the jagged rotational values, and replaced this area of jitter
with a smooth curve. In areas where gaps were present, Fig.
5A (frames 13-18) and Fig. 5C (frames 30-40), the network
successfully approximated curve structure and magnitude in
areas of absent data. Additionally, unlike with the simulated
input, the network output for Kinect-captured data appears to
overcompensate in areas of maxima and minima. Whereas this
could be an issue for the simulated data, the structure of the
Kinect-captured data is assisted by this overcompensation. A
frequent issue associated with Kinect capture is the inability
for software like iPi Soft to accurately match and render the
intensity of elbow swing at the extents of motion. This often
leads to stiff and dull arm movements. Therefore, there is no
real concern for the network to slightly overcompensate by
around 5-10 degrees. If anything, this feature improves the



6

Fig. 6. The above figure demonstrates the full network output for two sets
of inputs: corrupt data in which the gaps are left unaltered, and corrupt data
that has had gaps filled by iPi Soft.

realism associated with this movement.
Occasionally, software such as iPi Soft may offer optional

gap filling for occluded joints. Fig. 6 demonstrates two ver-
sions of a rendered joint movement: the first with gaps left
untouched, and the second with iPi Soft gap filling applied.
As depicted by the minima of Fig. 6, iPi Soft fails to accurately
approximate joint movement, filling in negative values in place
of the gap. These negative values cause the joint to appear as
though it is bending backwards. However, if this incorrectly
approximated joint curve is subsequently passed through our
series of networks, the joint curve is restructured to appear
much more accurate to human motion – the joint values now
remain positive, with a smooth curve replacing the pointy iPi
Soft output rotation values.

C. General Network Limitations

Finally, there are some limitations associated with our
networks. These limitations are primarily associated with the
specificity of the network inputs. For example, our network
input is restricted to joint data of 30fps. Additionally, our
training and test data is restricted to a single plane of rotation.
If a user were to attempt passing in full XYZ rotational data,
the network would be unable to properly interpret the greater
variety of joint angle values. Furthermore, all training data
obtained from the CMU Mocap Library utilizes the same
skeletal rig. Therefore, if a network input is collected from
a significantly different rig, or with skeletal files specifying
different DOF or offset values, the network output will vary
as a result.

Specifically for the noise removal network, there are some
instances in which the network will overcompensate for jitter.
For example, if the series of networks is fed a full set of
joint data for the right elbow but no data for the left elbow
(with all joint values equal to 0), the gap filling network will
be forced to approximate an entire left elbow movement. The
gap filling network is typically able to accomplish this task,

as depicted in Fig. 7A. The output of the gap network, for this
instance, is indicative of ideally smooth motion characteristics.
However, if this gap filling output is passed to the subsequent
noise removal network, one may recognize that the noise
removal output has disturbed some of these smooth qualities,
particularly in the peaks. These deviations do not ruin the
motion by any means, but they are noticeably more jagged.
Separately, for the case in which the network is supplied with
a full set of left elbow joint data, but no right elbow data, one
will recognize a significant and unwanted change in the curve
structure. As demonstrated in Fig. 7B, the left elbow joint
input already has an a smooth and clean shape. Therefore,
the networks should ideally output a curve structure similar to
the input. However, due to the network’s dependency on joint
correlation, the absence of right elbow joint data causes the
output to become warped, with irregular motion between the
two major peaks.

IV. CONCLUSION

The series of networks constructed for this project effec-
tively interpret and correct Kinect-captured data to mimic
the characteristics of smooth and natural motion. For the
correction of other joints or limbs, the structure of these
networks may act as a base framework. Through further
implementation of joint correlation, as well as the extension
of single-dimensional rotation to multi-dimensional rotation,
these networks have the potential to allow for full skeletal
correction.

REFERENCES

[1] Mall, Utkarsh Lal, G. Chaudhuri, Siddhartha Chaudhuri, Parag. (2017).
A Deep Recurrent Framework for Cleaning Motion Capture Data.

[2] “An introduction to the Kinect sensor,” An Introduction to the Kinect
Sensor — Microsoft Press Store, 15-Jul-2012. [Online]. Available:
https://www.microsoftpressstore.com/articles/article.aspx?p=2201646.
[Accessed: 16-Dec-2021].



7

Fig. 7. The figure above demonstrates the network output for simulated input containing the case of complete data for the right elbow and no data for the
left elbow (A), or full data for the left elbow and no data for the right elbow (B). In this instance, the network output is intended to be approximated clean
joint data for the left elbow.


