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APPLICATIONS/PRACTICES

Abstract
We present a deep learning-based algorithm that can auto-
matically rotoscope people in a given scene, without any user 
input. Current approaches to image matting require a sig-
nificant amount of human input, irrespective of whether it is 
manually rotoscoped or through a chroma 
key. This study shows that this algorithm 
can perform as well as and even surpass the 
rotoscoping capabilities of the Adobe After 
Effects’ RotoBrush tool, in a variety of 
scenes comprising different lighting condi-
tions, movements, and subjects. This makes 
it suitable for integration within a visual 
effects (VFX) pipeline.

Keywords
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Introduction

 I 
 � mage matting is one of the most 
common techniques used in 
filmmaking. It consists of extract-
ing elements from dif ferent

scenes and combining them into a 
new, composite shot. This extrac-
tion is performed through the use of 
a matte, i.e., a black and white frame, 
in which the white pixels denote the 
foreground elements; black pixels, the 
background elements; and gray pix-
els, the semitransparent elements.1 The process of cre-
ating a matte is vital for VFX pipelines, since it allows 
filmmakers to place actors in environments that do not 
exist in real life.

However, the matting process is a very mechanical 
and resource-intensive one, since it requires the skills of 
a professional artist to achieve a clean, polished result. 
Factors such as the number of elements to extract, amount 
of detail, transparency, and the length of the shot can 
make this process even more complicated and, in turn, 
require the use of multiple digital tools and additional 
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man-hours. Often, matting becomes a bottleneck in the 
post-production pipeline.

To overcome these issues, there has been a considerable 
amount of research devoted to developing algorithms that 
can generate a polished matte, while minimizing user 

input. For example, the Adobe After 
Effects’ RotoBrush tool predicts the 
foreground elements’ boundaries in a 
given frame and propagates them to the 
subsequent ones, reducing the manual 
labor required.2 This raises the question 
as to whether there is a way to automati-
cally extract a matte from an arbitrary 
scene, without any user input.

The computer vision field is well 
known for having deep learning algo-
rithms that can automatically detect 
and segment objects within an image. 
Therefore, it is worth evaluating whether 
these object detection algorithms can be 
utilized in the VFX industry to produce 
mattes that are, with minimal labor, 
ready for implementation.

Background

Image Matting
To properly understand the complex-
ity of the matting process, it is useful to 
frame it from a mathematical perspec-
tive. The equation below describes the 

input image as a linear combination of its foreground 
and background elements3:

	​​ I​ p​​ = ​α​ p​​ ​F​ p​​ + (1 − ​α​ p​​ )  ∗ ​B​ p​​  ​ α​ p​​ ∈ [0, 1]​� (1)

where p(x, y) corresponds to a specific pixel in an 
image, Ip is the intensity value for that pixel, Fp and Bp 
are the intensity values for the foreground and back-
ground elements, respectively, and αp is the opacity 
of the foreground. The opacity value is important for 
semitransparent objects such as glass, whose final 
intensity value is a combination of the glass itself and 
the background behind it. Usually, only Ip, the inten-
sity of the final image is known, while Fp, Bp, and αp 
are unknown.
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For a three-channel RGB image, the matting prob-
lem is severely underconstrained
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It has seven unknowns, but only three equations to 
solve them. Therefore, user input that provides addi-
tional constraints is required, such that the equation 
can be properly solved.

In most productions, these constraints are defined by 
two main methods: chroma keying4 and rotoscoping.5 
Chroma keying consists of placing the actors in front of 
a green background that is evenly lit and has a constant 
hue. Then, in post-production, algorithms take advan-
tage of this constraint to isolate the actors. However, the 
green screen setup may not fit all productions or scenes, 
and significant expertise is required to correct for any 
issues during capture, such as a misexposure.6

Because chroma keying has a very specific set of 
constraints and there are algorithms specifically tuned 
to that approach, it is not as interesting as the roto-
scoping approach, which is more flexible but more 
labor-intensive.

Manual Rotoscoping
In contrast to chroma keying, manual rotoscoping does 
not rely upon a well-defined background to perform the 
foreground/background separation but rather on man-
ual input from an artist. Even though there are multiple 
techniques to approach and make this process more effi-
cient, it still requires the artist to outline the subjects to 
extract, frame by frame. It is important that the artist 
pays attention to fine details of the actor, such as their 
hair, and partial transparencies that may occur, such as 
glasses or motion blur. These features need to be care-
fully processed since they could carry background pixels 
with them and affect both the quality of the compos-
ite and the authenticity of the story. In addition, it is 
important that the matte is consistent over time, as any 
unnatural temporal deviations may attract the attention 
of the observer.

Due to the high amount of work that is required to 
create a successful rotoscope, software developers have 
included tools that are aimed to ease this process in their 
VFX programs. Tools such as keyframe interpolation or 

planar tracking can aid the process by propagating the 
mask over time, thus minimizing the amount of refine-
ment required from the user.

There are also more advanced algorithms dedicated 
to predicting the location and shape of the foreground 
objects, based on an initial input from the artist, effec-
tively reducing the time spent in the process.

Adobe After Effects’ RotoBrush Tool
One of the most prominent tools available to ease the roto-
scoping process is the Adobe After Effects’s RotoBrush 
tool.2 This function is based on the paper Video SnapCut 
from SIGGRAPH’09, by Bai et al. It works by receiv-
ing scribble inputs from the user defining the foreground 
and background areas of the image. Then it proceeds 
to predict the boundary of the elements, which can be 
adjusted through further user input. This prediction also 
extends into the temporal domain, since it propagates the 
mask throughout the sequence of images (Fig. 1).

To accurately predict the matte, this algorithm takes 
advantage of local segmentation. Given the initial input 
outline, it divides it into multiple overlapping windows 
(boxes) along the boundary. Then, a local classifier is 
run on each window to separate the foreground and 
background pixels. This classifier is based on color and 
shape models, since it assumes that foreground ele-
ments will have a distinct color and shape profile than 
their background.7 The color and shape models oper-
ate independently and are assigned a confidence value, 
which determines their weight when they are combined 
into a single matte. In that way, if the foreground and 
background elements have similar color tonalities, the 
shape model can ensure an accurate segmentation. The 
output of each local box is then combined to create a 
single matte for the given frame.

For propagation to a next frame, the algorithm takes 
advantage of the Scale Invariant Feature Transform 
(SIFT).8 This is an algorithm that finds and matches 
key features from two subsequent frames. Thus, SIFT 
is used to align the frames and move all boxes together. 
Then, local optical flow is computed to account for the 
deformation of the subject between frames, adjusting 
each segmentation window independently.

User input is accepted throughout this stage to 
ensure that the predicted mask is correct and that the 
propagation does not add any errors.

Given that the purpose of these algorithms is to 
reduce user input as much as possible, it is therefore 
interesting to test an approach that would require mini-
mal to no input, based on deep learning.

Deep Learning Approach
In the past few years, there have been considerable 
advances in the field of computer vision, that include uti-
lizing deep learning algorithms to classify images based 
on their content and segment them into different object 
instances.9–12

(a) (b)

FIGURE 1.  After Effects’ RotoBrush tool. (a) Given an input 
boundary around the player, a series of overlapping windows are 
created, which compute local segmentation. (b) Then, this matte is 
propagated to the next frame.
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Although image matting and object classification are 
different problems, for the case in which there is no partial 
object transparency [αp is either 0 or 1 in (1)], the matting 
problem can be reduced to a simple classification one, in 
which the task is to discern whether a given pixel p belongs 
to the foreground or the background class. Therefore, it is 
of special interest to analyze the performance and poten-
tial of these algorithms to automate the matting process.

Most object classification algorithms are based on neu-
ral network architectures. These networks extract image 
features at different scale and semantic levels and output 
a vector with the probabilities of the image belonging to 
the given classes. A neuron in these networks functions 
similarly to the ones in the human brain (Fig. 2). Each 
neuron within a layer is connected to multiple neurons 
from its previous layer. It takes the signals from those 
neurons and weight averages them. Then it computes an 
activation function (usually a nonlinear one) before send-
ing the signal to the neurons in the next layer.13

Although there are different types of network archi-
tectures, the most common ones for image classifica-
tion are called convolutional neural networks (CNNs).13 
They are formed by convolutional layers, where the 
neurons are organized in 3D volumes, representing the 
three dimensions of an image (height, width, and chan-
nel depth), rather than single columns (Fig. 3). Each 
neuron in a CNN is connected to a local 3D region on 
the previous layer rather than to every single neuron as 
in a traditional architecture. The size of this local 3D 
region is the same for all neurons in the layer. This allows 

the same set of parameters to be applied at each neuron 
in the spatial dimension, effectively performing a filter-
ing operation. This parameter sharing reduces the total 
number of parameters to be trained, making the process 
more efficient. Multiple filters can be stacked within 
each convolution layer to extract different features at 
once, giving the layer its depth dimension.

Other layers that form the CNN architecture include 
rectified linear unit (ReLu), which compute the activation 
(nonlinear) function, allowing the network to model more 
complex functions, and Pool layers, which downsample the 
features from previous layers to analyze it at multiple scales.

For this experiment, we used a CNN developed by 
Google, called Xception,9 and adapted it to identify 
human subjects in a variety of situations.

Our Approach

Xception
Xception9 is a network developed by François Chollet 
at Google which performed extremely well in the 
ImageNet Large Scale Visual Recognition Competition 
(ILSVRC), an object classification challenge.14

It is based on the architecture of Inception,12 another 
network developed by Google, which was the first to 
propose the separation of cross-channel and spatial cor-
relations as a way to improve computational efficiency.

As previously mentioned, the parameters of a regu-
lar convolutional layer correspond to a set of learn-
able filters. These filters are small in the spatial 
dimension, but extend through the full depth of the 

FIGURE 2.  Illustration of a real neuron structure (left) versus an artificial neuron (right). Note the similarity in their information processing.

FIGURE 3.  Neural network architectures. Traditional neural network (left). CNN (right). Note the structural difference. 
In the CNN, each new depth layer corresponds to a stacking of filters.
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bilinear upsampling, convolution, batch normalization, 
and then a ReLu activation.

The use of downsampling after every Xception block 
allows the network to analyze features at multiple scales. 
This corresponds to the extraction of semantically sig-
nificant information, such as the presence of a human 
subject or not. Then, the upsampling layers along with 
the residual connections provide spatial information to 
accurately predict where the person is located.

Experimental Procedure
The experiment compared our algorithm’s output to 
mattes generated by manual rotoscoping (which we call 
ground truth), as well as to the output of After Effect’s 
RotoBrush tool. The test footage for this evaluation con-
tained subjects with no partial transparency or motion 
blur, to reduce (1) to a binary classification problem and 
to remove the need for the user input.

Equipment
The algorithm was trained and tested on a system using 
two NVIDIA GTX 1080ti GPUs, with the data stored 
locally in the system.

The details of the cameras and settings used to cap-
ture the test footage are as follows:

■■ Sony FS5 Mark 2. Recorded at 1080p, 24 frames/sec, 
2.2 Gamma, Rec. 709 color space and ProRes 
422 HQ.
■■ Arri Alexa Mini. Recorded at 1080p, 24 frames/sec, 

2.2 Gamma, Arri Look Classic 709, ProRes 4444.

The ground truth was created using the Roto node in 
NukeX 11.

input  volume.13 Therefore, they compute both chan-
nel and spatial correlations simultaneously. Inception 
initially proposed a way to separate these operations 
since their correlations can be assumed to be indepen-
dent of one another. Xception took this assumption 
further by completely separating them and making 
them fully independent (Fig. 4).

At its core, Xception is comprised of an “Xception 
module,” which is a series of depthwise separable con-
volutions stacked together. A depthwise separable 
convolution first computes a set 1 × 1 convolution 
across the entire image depth, to compute channel cross 
correlations, and then applies spatial 2D filters to each 
of the output channels. This procedure has proven to 
be more efficient than traditional 3D filters and even 
outperformed the Inception network.

Our Approach
Our network utilizes an Xception backbone imple-
mented in a pyramidal array.15 After each Xception 
block, the extracted features are downsampled spatially 
by a factor of 2. After six Xception blocks, upsam-
pling blocks scale back the feature maps by 2, until 
the original resolution is achieved. This is because 
low-resolution features have more semantic meaning, 
i.e., they provide more information about the content 
of the image, whereas high-resolution features pro-
vide better spatial information. At each downsampling 
operation, residual connections that link to upsampling 
layers deeper in the network are created. This allows 
high-resolution features to be combined with semantic 
details from deeper in the network.11 In Fig. 5, yellow 
layers are the added upsampling blocks that perform 

FIGURE 4.  Xception’s depth wise separable convolution. First a set of 1 × 1 convolutions calculate 
channel cross correlations, and then 2D filters are used for spatial cross correlations, improving the 
computation’s performance.
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with segmentation masks for people. These images were 
separated randomly in 41,000 for training and 5,000 for 
validation. The network was trained using the Adam 
optimizer, with an initial learning rate of 0.001 and a 
batch size of 4.

It was important to ensure that the training data 
reflected the multiple scenes in which the algorithm 
may be utilized, and accounted for any problems dur-
ing shooting since not all scenes will be perfect straight 
out of the camera. With this in mind, augmentation 
operations were applied to the COCO images. Some 
of these augmentations included modifications in rota-
tion, blur, saturation, noise, exposure, and warping.

Test Images
Just like the training batch, the test images needed to 
account for different shooting conditions and content 
relevant to professional productions. Therefore, a test 
batch was captured using the equipment listed in the 
section titled “Equipment,” to test the network under 
different input conditions:

■■ outdoor versus indoor scenes
■■ type of shot (wide, medium, and close up)
■■ number of people in the shot
■■ improperly exposed shots
■■ people movement (walking sideways, walking to/from 

camera, and rotating)
■■ amount of detail (edge quality).

The shooting took place at Magic Spell Studios, 
Rochester, NY. Once the footage was shot, one second 
(24 frames) of each scene was extracted and transcoded 
to TIFF images to feed them into the network.

Ground Truth and RotoBrush Mattes
The creation of the ground truth mattes was outsourced 
to students in the School of Film and Animation, 
Rochester Institute of Technology. These students were 
recommended by faculty members based on their roto-
scoping skills. The mattes were created manually using 
the roto node in NukeX 11. The ground truth was deliv-
ered as black-and-white TIFF files, where the white 
pixels correspond to the foreground and the black ones 
to the background.

The creation of the RotoBrush matte was performed 
in After Effects 2018. For this, a key or reference frame 
was chosen among the 24, and a matte was created and 
refined by the user for that single frame. Then, the 
algorithm propagated this initial matte to the adjacent 
frames, without further input from the user. Just as with 
the ground truth, the matte was exported as TIFF files.

Metrics
The metric chosen to evaluate the matte quality was 
Intersection over Union (IOU). IOU is utilized in 
competitions such as the PASCAL Visual Object 
Classification (VOC) challenge,17 which is a benchmark 
in visual object recognition.

The RotoBrush matte was computed on After Effects 
CC 2018.

Data Set
The Xception backbone of the network was pretrained 
on the ImageNet data set, which contains more than 
14  million images that have been hand annotated for 
object recognition across 20,000 categories.14 The full 
data set had been fed to the backbone ten times during 
training (ten epochs). The significant amount of data 
used during pretraining allowed us to simply fine-tune 
the network to our specifications using transfer learn-
ing,13 rather than to train it from scratch.

The second half of the network was trained on Com-
mon Objects in Context (COCO),16 on the person cat-
egory only. This data set contains roughly 46,000 images 

FIGURE 5.  Our network architecture. The blue blocks correspond 
to Xception modules described previously. The yellow blocks 
correspond to the layers we added for locating the people within the 
image. Note how they are arranged in a pyramid structure, to take 
advantage of both semantic and high-resolution location features.
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seen that the network outperformed the RotoBrush tool 
in After Effects in most of the frames. The RotoBrush’s 
peak performance occurred at the frame in which the 
refined matte was created and decayed as the frames got 
farther away from the refined matte.

Person Medium Rotation
This shot was also indoors, and the goal was to present 
the network with a differently scaled actor. This shot 
included a medium close up, as opposed to the previous 
wide one. In addition, the actor was asked to incline his 
body sideways, to deviate his head and body from the 
vertical axis (Fig. 9). It can be seen that the network did 
a good job in outlining the edges of the subject, such as 
his jacket’s neck and ears, but struggled with very dark 
areas such as the bottom part of his jacket (Fig. 10).

Looking at the IOU metrics per frame (Fig. 11), it 
can be seen that the network had a similar performance 
to the RotoBrush tool, achieving over 0.9 IOU for the 
whole scene. Its performance decayed toward the end of 
the shot, in which the actor was not vertical. However, it 
can be seen that the actor’s edges were preserved consis-
tently, so the main cause of the decreased performance 
was the underexposed areas of his jacket and not the 
deviation from the vertical axis.

Given a ground truth and test boundaries, the IOU 
is defined as:

	​ IOU  = ​ 
Area of Overlap

  ___________  Area of Union  ​​�  (3)

where the area of overlap is the number of pixels that are 
common to both the foreground boundaries, and the 
area of union is the number of pixels that both bound-
aries encompass when placed one on top of the other. 
The IOU is therefore a metric that calculates the degree 
of overlap between both the ground truth and the test 
areas. If they overlap perfectly, then the IOU will have a 
value of 1, whereas if they are totally different, the IOU 
will have a value of 0. Since we compared the overlap 
between the ground truth and the test mattes, it was an 
appropriate metric to be used.18

Results
The results from the network are shown below for dif-
ferent tests. The IOU metric is also included for both 
the network and the RotoBrush approaches. It is worth 
noting that the artists who generated the ground truth 
mattes spent two to ten hours on average per 24 frames. 
On the other hand, the algorithm processed each frame 
in 0.38 seconds on average, or each shot of 24 frames in 
9.12 seconds. This significant amount of time saved could 
be spent by artists for refining the matte from the network 
rather than having to create it from scratch.

Person Wide Walking
This shot was used to test the performance of the net-
work in an indoor setting, which is usually character-
ized by a lower amount of light available. In addition, 
the framing was chosen to include the whole actor in 
the shot and make him move across the entire scene. 
Figure 6 shows one of the input frames to the network, 
with its respective ground truth, and Fig. 7 shows the 
output mattes from the network and RotoBrush. As 
can be seen, the network detects the person very well, 
but struggles with the shoes, which are very dark, and 
therefore may not have enough detail to be classified as 
part of a person.

Below are the IOU computations per frame, for the 
24 frames extracted for this scene (Fig. 8). It can be 

FIGURE 8.  IOU metrics for the person wide walking shot. As can 
be seen the network remains fairly consistent at high accuracy, 
whereas the RotoBrush struggles with propagation.

FIGURE 6.  Input TIFF to the network (left). Ground truth matte 
(right).

FIGURE 7.  Matte from the network (left). Matte from RotoBrush 
(right).
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Person Medium Yaw Overexposed
This shot presented the actor indoors in a medium 
shot. This time the actor was asked to rotate along his 
vertical axis and the right side of his face was over-
exposed by half a stop, to create a higher dynamic 
range across the person (Fig. 12). Once again, it can 
be seen that the network struggled with the darker 
parts of the jacket, while the outlines and edges were 
very similar to the ground truth, even if the actor was 
not lit uniformly (Fig. 13).

By looking at the IOU metric, it can be determined 
that the network very closely followed the RotoBrush’s 
performance, achieving almost 1.0 across the shot. The 
network has a small dip toward the end of the sequence 
of frames, but this is mainly due to the darker regions 
of the jacket and not a problem with the edges, as seen 
in Fig. 14.

Person Medium to Wide
This shot presented a progression from a medium to 
a wide shot and tested the network’s consistency with 
a change in the actor’s scale. In addition, the subject 
was facing away from the camera, to evaluate the net-
work’s ability to detect people when facial features are 
not present (Fig. 15).

It can be seen that the algorithm accurately outlined 
the subject at the distance, even with the presence of 
dark elements such as the jacket. However, it had some 
trouble discerning the fingers on the right side, taking 
the whole area as a solid hand (Fig. 16).

The IOU plot reflects the high accuracy of the algo-
rithm, which again is placed above 0.9 across the entire 
duration of the shot. It also seems to outperform the 
RotoBrush tool at several frames (Fig. 17).

Two People Outdoor Wide
This shot presented two people of different skin tones 
on camera in an outdoor setting. These new variables 
were chosen to see how the algorithm would perform in 
more complex scenes (Fig. 18).

It can be seen that the overexposed and cluttered 
background had an impact on the performance of the 
algorithm since it incorrectly classified some of the trees 
as people. However, it was able to identify both actresses 
on the scene and outline them without any problems. 
Once again, it struggled on the darkest areas, such as 
the dark pants of the actress on the left (Fig. 19).

The IOU heavily penalized this mislabeling of the 
background elements, reducing the network’s perfor-
mance to merely over 0.7 (Fig. 20). This is because the 
extra area in the background does not intersect with the 
ground truth data. However, it can be seen that it was 
pretty consistent across frames.

If we zoom in to the areas of interest, disregarding the 
background clutter, we can better appreciate the algorithm’s 

FIGURE 9.  Input TIFF to the network (left). Ground truth matte 
(right).

FIGURE 10.  Matte from the network (left). Matte from RotoBrush 
(right).

FIGURE 12.  Input to the network (left). Ground truth matte 
(right).

FIGURE 11.  IOU metrics for the person medium rotation shot. Note 
how the network performs similar to RotoBrush, but decays in 
performance due to dark regions in the jacket.
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job on the silhouette of the person (Fig. 21). Since the IOU 
metric was not determined by a bad performance on the 
subjects’ outline, then a refinement algorithm could be 
implemented to reduce the number of detections to the 
number of subjects identified in the scene.

Composite Example
As a practical way of testing the algorithm’s feasibility 
to generate a matte for VFX, one of the shots was taken 
and composited onto an arbitrary background, to better 
evaluate the edge quality (Fig. 22).

FIGURE 15.  Input image to the network (left). Ground truth matte 
(right).

FIGURE 16.  Network output matte (left). RotoBrush output matte 
(right). Note the detail on the hands, as well as on the neck.

FIGURE 13.  Matte from the network (left). Matte from RotoBrush 
(right).

FIGURE 14.  IOU metrics for the person medium yaw overexposed 
shot.

FIGURE 18.  Input image to the network (left). Ground truth matte 
(right).

FIGURE 17.  IOU metrics for the person medium to wide shot.
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FIGURE 19.  Output matte from the network (left). Matte from the 
RotoBrush (right).

FIGURE 20.  IOU Metrics for the two people outdoor wide shot. Note 
how the incorrect classification of the background elements heavily 
penalized the network.

FIGURE 21.  Actresses extracted using the ground-truth matte (left). 
Actresses extracted using the network matte (right). Note how their 
edges are well preserved, despite the low IOU performance.

FIGURE 22.  Composite created with the ground truth matte (left). 
Composite created with the output of the network (right). Note the 
difference in the fingers, as well as in the neck.

It can be seen that the outlines are very similar 
between both the ground truth and the algorithm. 
The main difference arises with small details such 
as the fingers on his left hand, where the algorithm 
incorrectly classified background pixels as pertaining 
to the person.

Conclusion
We presented an automated way to rotoscope people, 
given an arbitrary sequence of images. For the different 
tests conducted, our algorithm performed to the stan-
dard, matching or even exceeding the performance of 
Adobe After Effect’s RotoBrush tool in some shots. Even 
though in other shots it missed parts of the actor due 
to dark regions, and included elements from the back-
ground, the overall performance on the edges was quite 
satisfactory. The algorithm seemed to perform better 
than RotoBrush when there was significant movement 
from the actor across frames, and more tests will need 

to be performed in order to validate this observation. 
In terms of labor hours, the algorithm outperformed the 
traditional rotoscoping method, from an average of five 
hours to ten seconds approximately per shot. This huge 
time saved would give a head start to artists and allow 
them to focus on refining the matte output rather than 
creating it from scratch, which would improve the pro-
ductivity of the whole VFX pipeline.

Next Steps
The scope of this project was to provide insights into 
whether deep learning architectures designed for object 
detection could be used in the Visual Effects world, so 
most of the time was spent on testing its performance 
with basic settings and conditions, which showed prom-
ising results. Some areas for further improvement are 
outlined below.

Hyperparameter Tuning
Due to time constraints and resources, there was 
not much time available to try out different types of 
hyperparameters for the network, including the size 
of each convolution layer, the strides, and the depth 
of the overall network, as well as the learning rate. 
By dedicating time to tuning these parameters on the 
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validation set defined above, improvements in the 
results could be obtained.

Temporal Dependency
Another avenue for improvement would be to con-
sider adding a correlation in the temporal domain. 
Currently, the network takes and processes each frame 
independently from each other. On the other hand, the 
RotoBrush tool utilizes SIFT and optical flow cues to 
propagate the masks across the different frames and cal-
culate its predictions. There are segmentation data sets 
specifically tuned for videos, such as Densely Annotated 
Video Segmentation (DAVIS), which could represent a 
good area for improvement. Also, adding a gate recur-
rent unit to leverage features present in sequential 
frames could be carried out.

Edge Refinement
One last option would be to implement an edge refin-
ing technique, such as feathering, which would help 
compositing be more visually smooth, or a hole-filling 
algorithm that could compensate for the inside areas 
that were deemed underexposed.
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