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Abstract
The accurate estimation of a camera response function (CRF) 
allows for proper encoding of camera exposures into motion  picture 
post-production workflows like the Academy Color Encoding 
System (ACES), helping minimize noncreative manual adjust-
ments. Although there are well-known standard CRFs implemented 
in typical video camera workflows, motion picture camera work-
flows and new high dynamic range (HDR) workflows have intro-
duced new standard CRFs, as well as custom 
and proprietary CRFs. Current methods to 
estimate this function rely on the use of test 
charts, restrictive exposure and/or lighting 
conditions, or assume a simplistic model of the 
function’s shape. All of these methods become 
problematic and tough to fit into motion pic-
ture production and  post-production work-
flows, where the use of test charts and varying 
camera or scene setups becomes impractical. 
We propose a method initially based on the 
work of Lin, Gu, Yamazaki, and Shum that 
considers edge color mixtures in an image or 
image sequence that are affected by the non-
linearity introduced by a CRF . This  feature 
is  then used in a Bayesian framework to 
estimate a posterior probability distribu-
tion function of the CRF model parameters 
approximated by a Markov Chain Monte 
Carlo (MCMC) algorithm, allowing for a 
more robust description of the CRF over methods like maximum 
likelihood (ML) and maximum a posteriori (MAP).

Keywords
Camera response function, gamma correction, optoelectronic 
camera function, radiometric calibration

Introduction

 D 
  igital processes currently generate large amounts 
of data. These processes exist in a large number of 
applications, and, in most cases, the generated 
data exists by itself without any information or 

details about the process that created it. It is of interest 
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to use computers to analyze the data, learn information 
about the process, and be able to predict future data 
from an estimation of the process that generated that 
data. This is currently known as machine learning.

One of such processes is the capture of images by a 
digital system. Different cameras have different ways of 
encoding the light being captured from a scene. This 
encoding converts the light falling onto the imaging sen-

sor into digital pixel code values that are 
then manipulated in  post-production. 
One of the most important steps in 
this encoding is the camera response 
 function (CRF), which allows the cam-
era to have more efficient encoding 
and to encode the light from the scene 
in a way that mimics the human visual 
system. Another important typical step 
following the implementation of the 
CRF is a color encoding transform that 
ensures subsequent appropriate dis-
play color reproduction. Although the 
main objective of the CRF is similar for 
all cameras, different cameras imple-
ment different types of functions due 
to  different existing standards, advance-
ments in camera technology, proprietary 
advantages, and image sensor charac-
teristics, to name a few reasons. This 

means that the CRF is one of the reasons why time has to 
be spent making technical adjustments before images look 
uniform for  subsequent creative manipulations.

These adjustments are a time-consuming endeavor 
that can be optimized by implementing methods to esti-
mate the camera specific characteristics that created 
the images, like the CRF, without the need for specific 
camera analysis procedures that are not viable or practi-
cal in post-production environments. Typical television 
or motion picture productions involve different image 
manipulation workflows that are very challenging to 
integrate. Many of these productions can use various 
digital cameras and also include film in their produc-
tion. Additionally, during post-production, images from 
all these sources will arrive at a facility in a number of 
different formats, color encodings, and, in many cases, 
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without helpful metadata. An example system to solve 
some of these issues is the Academy Color Encoding 
System (ACES) and its Input Device Transform (IDT), 
which aims at characterizing every possible input so it 
can be integrated into the ACES workflow. The CRF is 
a key camera characteristic that needs to be known for 
the calculation and/or implementation of the IDT since 
it relates camera code values to linear scene radiometry 
and is critical for these calculations to be accurate.

Our work focuses on developing a method to estimate 
a motion picture CRF from an image or a sequence of 
images and evaluate its impact in computing and imple-
menting an accurate motion picture color encoding 
transformation. Although camera characteristics like 
the CRF are easily measurable in a research environ-
ment, they are very hard to measure during production 
or post-production where the time is short and other 
processes take priority. Furthermore, modern cameras 
offer the user a wide range of options to modify some of 
these characteristics, making the interchange of images 
even more challenging during post-production.

Previous Works
Aside from measuring the CRF through direct pho-
tography of a variable ref lectance or transmittance test 
chart, some of the most popular methods for estimat-
ing the CRF involve taking multiple registered images 
of a static scene while varying the camera exposure.1,2 
Work has also been done by Grossberg and Nayar3 to 
relax this dependence on multiple spatially registered 
images by using histograms of images at different 
exposures. Manders et al.4 estimate the response by 
capturing registered images of a static scene illumi-
nated by different combinations of light sources and 
locking the exposure instead of varying it. Similar 
work was presented by Kim et al.5 where the estima-
tion is done based on a video sequence with varying 
exposure. All of these methods require significant 
effort to obtain a series of registered, static scene, or 
 exposure-dependent images. Other approaches, like 
Farid,6 assume that the response function has the 
form of a gamma curve to estimate it from one sin-
gle image by exploiting the fact that the nonlinearity 
introduced by the gamma correction also introduces 
higher order correlations in the frequency domain that 
can be detected with tools from the polyspectral analy-
sis. However, many cameras in use today in the motion 
picture industry have CRFs that differ significantly 
from a gamma curve, especially higher end motion 
picture cameras where their design deviates from the 
typical video imaging paradigm. Lin et al.7 estimate 
the response by looking at the edge color distributions 
in a single image. This work serves as a basis for our 
research as we look to expand its methodology by ana-
lyzing edge color distributions in a sequence of motion 
images and expand their maximum a posteriori (MAP) 
approach to a complete Bayesian framework.

More recent work has also focused on using multiple 
images, especially photo collections. Diaz and Sturm8 
use a set of images from an internet collection to recover 
the camera’s geometric calibration and a 3D scene 
model, which in turn are used as input to determine the 
camera’s radiometric response function. The require-
ment to obtain the 3D scene model would be an unde-
sired workflow step for motion picture post-production 
workflows focused on image integration and color cor-
rection. Shafique and Shah9 introduce a method that 
uses differently illuminated images and estimates the 
response function by assuming that the properties of 
materials in a scene should remain constant and use 
cross-ratios of image values in the different color chan-
nels to compute the response function. They also model 
the response function as a gamma curve. This again 
excludes the modeling of cameras that have CRFs that 
differ from a gamma curve and their algorithm was only 
verified by synthetic experiments. Kuthirummal et al.10 
found priors for statistics in large photo collections and 
used them to estimate the response function of generic 
camera models assuming that all instances of a camera 
model have the same properties and that many images 
are available for that specific camera. A major disadvan-
tage of their method is that it does not allow modeling 
of cameras with interchangeable lenses. This is also an 
impractical approach for the motion picture industry.

In summary, the existing methods described suffer 
from the following general practical limitations in their 
application to the motion picture industry: they are 
restrictive in the position or movement of the capture 
device, they are restrictive in the exposure required for 
the camera sensor, and they wrongly assume a simplistic 
mathematical formulation of the CRF that does not char-
acterize all possible CRFs or they require co-capture of 
images and some additional scene information. Our pro-
posed approach explained in the following sections again 
looks to expand on the work of Lin et al. to avoid all of 
these limitations and provide a solution based on unre-
stricted captured images that are typical of the motion  
picture industry.

Background
The radiometric camera response function (CRF) f 
relates captured scene radiance I, or proportional image 
irradiance, to its measured intensity M in the image, 
represented by the pixel code value:

  M = f (I  )  . (1)

Typically, radiometric calibration methods solve for the 
inverse response function  g =  f   −1  , which is invertible 
since the sensor output increases monotonically with 
respect to I. Popular previous works relying on multiple 
exposures compute the inverse response function based 
on the relationship:

  g ( m  A  )  = kg ( m  B  )  . (2)
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where mA and mB represent image intensities in images 
A and B, respectively, for corresponding points, and 
k denotes the exposure ratio between the two images. 
Requirements like precise registration of images or 
known exposure ratios have been worked around with 
the use of histogram equalization and the use of itera-
tive methods, referenced in the previous section, to 
solve for k and g.

One important obstacle in computing the camera 
radiometric response function from Eq. 2 is the expo-
nential ambiguity. From Eq. 2, it can be seen that, if g 
and k are solutions for a specific image set, then g u and 
ku could also be solutions. To deal with this ambiguity, 
these prior methods require a good initial estimate of 
the exposure ratio if unknown, and assumptions on the 
structure of the radiometric function model as presented 
by Grossberg and Nayar.11 Their results present a rela-
tionship between image intensity  M = f (I)   and image 
irradiance I that can be expressed as a linear combina-
tion of an average CRF h0 and principal components hn:

  f (I)  =  h  0   (I)  +   ∑ 
n=1

  
N
   w  n    h  n   (I )   . (3)

This principal component analysis (PCA) approach is 
utilized to model the CRF in combination with image 
features like measured image intensity characteristics 
that get affected by a nonlinear radiometric response, 
edge color distributions being an example as presented 
by Lin et al.7 In Fig. 1, we can see the measured non-
linear distributions of edge colors produced by the non-
linear CRF. This warping of image irradiance colors 
into a nonlinear measured color distribution provides 
us with an image feature that can be used to estimate 
the inverse CRF as it is explained in the next section.

Edge Color Distributions
Single sensor (charged coupled device or CMOS) cam-
eras, like most used in the motion picture industry, 
require a color filter array to capture color images. Each 
array element, or pixel x, images a solid angle of the 
scene and we can denote the whole array of pixels as 
S(x). For each x, the image irradiance I depends on the 
sensitivity qk of the pixel and filter pair, where k is the 

color of the filter, and the incoming scene radiance R 
incident on the image plane points p included in S(x):

  I (x, k)  =  ∫  λ  k      ∫ s (x)    R (p, λ)   q  k   (λ)    dp dλ . (4)

Here, λ represents the range of wavelengths that are 
transmitted by the color filter k. It is assumed that all 
three colors, i.e., red, green, and blue, are measured 
for each pixel position because of demosaicing in 
the  camera.

To analyze edge color distributions, we start by con-
sidering two regions of distinct but uniform color like 
those in Fig. 1. A pixel x imaging a scene area where the 
two regions come together on an edge will be receiv-
ing scene radiances R1 (λ) and R2 (λ), respectively, from 
region 1 and region 2, and the overall radiance incident 
on it can be expressed as:

   ∫ S (x)    R (p, λ) dp =  ∫  S  1   (x)     R  1   (λ) dp +  ∫  S  2   (x)     R  2   (λ) dp   

         = α  R  1   (λ)  +  (1 − α)   R  2   (λ)  , (5)

where  α =  ∫  S  1   (x)    dp   and S(x) is of unit area. Looking back 
at Eq. 1, if we substitute Eq. 4 and Eq. 5 into it, the 
measured color at pixel x will be:

  m (x, k)  = f [α  I  1   (x, k)  +  (1 − α)   I  2   (x, k) ]  . (6)

For a linear relationship between the image irradiance I 
and the measured color f(I) to exist, the following prop-
erty would hold:

   f  [α I  1   +  (1 − α)   I  2  ]  = αf ( I  1  )  +  (1 − α) f ( I  2  )  .

This means that the measured colors of pixels that lie 
on an edge would fall on a straight line in the RGB color 
space between both regions. However, since f is typi-
cally nonlinear, the measured edge colors form a curve, 
rather than a straight line, that provides information 
on the CRF. We use this nonlinearity of the measured 
edge color distributions to estimate the CRF, based on 
the assumption that the inverse CRF should transform 
the measured values into values linearly related to image 
irradiance. For an edge region with measured colors M1 
and M2, the inverse CRF g should map the measured 
color Mp of each point p in the region to a line defined by 
g(M1) and g(M2). Figure 2 shows this graphically. A func-
tion g satisfies this property if the distance from g(Mp) to 
line g(M1) g(M2) is zero as formulated by Eq. 7, where × 
is the cross-product operation between the two vectors. 

    
 | [g ( M  1  )  − g ( M  2  ) ]  ×  [g ( M  p  )  − g ( M  2  ) ] | 

   _________________________   |g ( M  1  )  − g ( M  2  ) |    = 0  (7)

We collect all obtained edge color triplets into a set 
Ω = {M1, M2, MP} from all images considered and then 
define the total distance as:

  D (g; Ω)  =  ∑ 
Ω
      

 | [g ( M  1  )  − g ( M  2  ) ]  ×  [g ( M  p  )  − g ( M  2  ) ] | 
   _________________________   |g ( M  1  )  − g ( M  2  ) |      . (8)
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FIGURE 1. Measured color nonlinear distribution at image edges 
(adapted from Lin et al.7).
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The best inverse response g is one that results in the 
smallest total distance among all triplets selected. 

Bayesian Framework
Probability-based estimation methods have been used 
for many years and in many applications.12 Two popular 
solution approaches for these estimation methods are 
maximum likelihood (ML) and maximum a posteriori 
(MAP).13,14 In the case of ML, the result produces the 
choice most likely to have generated the available data. 
MAP  produces the choice that is most likely, given the 
available data. An important difference is that MAP 
estimation applies Bayes’ Rule, shown in Eq. 9, so that 
the estimate can consider prior parameter knowledge 
in the form of a prior probability distribution, p(g), 
while evaluating the likelihood of the data, p(Ω|g), gen-
erated by those parameters. MAP can be considered 
an improvement over ML, but both ML and MAP give 
only single point best estimates and not a distribution 
of the parameters in question, although the benefit is 
that these methods typically compute this single best 
estimate in a fast and efficient manner:

  p (g | Ω)  =   
p (Ω | g) p (g) 

 ________ p (Ω)    =   
p (Ω | g)  p (g) 

  ___________  
 ∫ g    p (Ω | g)  p (g) dg 

        . (9)

Prior Probability Distribution
The prior model was created from the Database of 
Response Functions (DoRF) compiled by Grossberg 
and Nayar.11 This database contains 201 inverse response 
functions from a variety of digital cameras and films 
up to the year 2003. The prior probability distribution 
based on this database, p(g), describes prior knowledge 
about the mathematical description and space of CRFs 
and is modeled as a Gaussian Mixture Model (GMM), 
with means and covariances μi, Σi for each mixture com-
ponent i and mixture proportion αi. In our implementa-
tion, the prior probability distribution was precomputed 
using the Expectation Maximization (EM) algorithm:

  p (g)  =  ∑ 
i=1

  
K
   α  i   N (g;  μ  i   ,  Σ  i  )   . (10)

Likelihood Probability Distribution
From Eq. 8, the estimated inverse CRF should yield a 
low total distance for the right inverse CRF. The likeli-
hood probability distribution, p(Ω|g), can then be mod-
eled by incorporating this distance calculation into an 

exponential distribution with λ set empirically and Z 
being a normalization constant: 

  p (Ω | g)  =   1 __ Z   exp  (− λD (g; Ω) )  . (11)

Bayesian MAP Solution
After modeling the prior and the likelihood functions as 
described in the previous section, the problem can be 
formulated with a MAP solution approach as described 
in Eqs. 12 and 13. The optimal response function for 
the data set Ω is then described as: 

  g = arg max  p (g | Ω)  = arg max  p (Ω | g) p (g )  . (12)

Or taking the log of (12), g can also be written as: 

  g = arg min  λD (g; Ω)  − log p (g )  . (13)

This again represents a single point best estimate of the 
inverse CRF, g, and serves as the main improvement 
comparison of our methodology.

Methodology
Posterior Probability Distribution
As mentioned previously, the benefit of ML and 
MAP is that these methods compute a single best 
estimate that can be easily and efficiently calculated, 
but this comes at the cost of throwing away informa-
tion included in the posterior probability distribu-
tion, p(g|Ω) in Eq. 9, due to the cost of computing the 
integral in the denominator over a high-dimensional 
space. To do this, we realize that the integral in  the 
denominator in Eq. 9 is an expected value calculation 
that can be approximated, allowing us to estimate the 
posterior distribution of g rather than just a single best 
estimate. This expectation is shown in Eq. 14 for the 
 general  continuous case:

  E [ f (z) ]  =  ∫    f (z)     p (z)  dz . (14)

Here, z is the random variable, and p(z) is the prob-
ability distribution over possible values of z. In our case, 
we are interested in calculating the expected value of  
f(z) = p(Ω|g), which is the probability of the data given g, 
the likelihood. This expectation is taken over the whole 
distribution of possible values of g, p(g), the prior prob-
ability density function.

Markov Chain Monte Carlo Sampling
The problem in calculating the expected value in Eq. 14 
arises from the fact that computing the integral in the 
denominator of Eq. 9 is in many cases an intractable 
problem.13 Conceptually, this integral sums up p(Ω|g) 
p(g) over all values of g in a highly dimensional space. 
Since we are interested in approximating this integral 
because of the high dimensionality, another way to 
think about the calculation is to sample N points z (1),  
z(2), z(3) ... z(N ) from the distribution p(Ω|g) at ran-
dom, with respect to the prior probability density 

G G

g = f –1M2

g(M1)
g(MP)

g(M2)

M1

MP

R R

B B

FIGURE 2. Nonlinear to linear distribution transformation (adapted 
from Lin et al.7).
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function p(g), giving us the expected value in the fol-
lowing form:

   E  p (z)    [ f (z) ]  =   lim  
N→∞

     1 __ N     ∑ 
t=1

  
N
  f  ( z    (t)  )   . (15)

By thinking of the problem in this way, we can imple-
ment a Markov Chain Monte Carlo (MCMC) sampling 
algorithm, like the Metropolis–Hastings algorithm, 13,14 
to approximate the posterior probability distribution for 
g given a set of image pixel data Ω.

Results
We implemented a Bayesian MCMC algorithm to esti-
mate the posterior distribution of the CRF following 
the methodology presented in the previous section for 
images captured with an ARRI digital motion picture 
camera. A Metropolis–Hastings algorithm was imple-
mented to sample the space of the inverse CRF, g, and 
calculate the posterior probability distribution. Five 
PCA components were used in the PCA CRF model, 
making the sampling approach a 5D sampling problem. 
In this preliminary implementation of the algorithm, it 
was optimized by looking at the range covered by the 
PCA coefficients based on the DoRF to optimize the 
PCA CRF model sampling space. We assumed equal 
CRFs for the red, green, and blue channels. Figure 3 
shows the CRF (inverse of g) expected value for the 
green channel after three   million sampling iterations, 
compared with the actual measured CRF for the cam-
era and the estimations based on the MAP approach. 
RMS errors between the MCMC CRF estimation and 
the aim curves were 0.028, 0.021, and 0.021 for the red, 
green, and blue channels, respectively, showing sig-
nificant improvement over the MAP approach,15 which 
produced RMS errors of 0.077, 0.047, and 0.044 for the 
same data. Figure 4 shows the MCMC approximation 
of the PCA coefficients CRF model target functions 
that represent the 5D posterior probability distribution 
function of g.
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Conclusion
Initial results estimating the posterior probability dis-
tribution function were very encouraging. The estima-
tion accuracy improvement over MAP is evidence of 
the effectiveness of implementing a complete Bayesian 
framework. Immediate future work includes optimiza-
tion of the MCMC sampling algorithm for more effi-
cient estimation of the CRF. By optimization, we include 
domain-specific knowledge into the MCMC sampling 
algorithm with the goal of limiting the sampling space 
while still accurately estimating the CRF. This is impor-
tant to be able to estimate independent CRFs for the 
red, green, and blue channels in an efficient manner. 
To this end, we will look at updating the 2003 DoRF 
with current camera systems CRFs and customizing 
the DoRF for specific motion picture workflow applica-
tions and then evaluate the performance of the MCMC 
sampling. It is our belief that, after introducing specific 
knowledge about the camera systems used today, the 
sampling space for g can be optimized while maintain-
ing the performance needed for the accurate encoding 
of images in various motion picture workflows.
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