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Causes of numerical pathology in formulas for reflectance factor (R), trans-

mittance factor (T), and reflectance factor over a perfectly black background (R0)

under the Kubelka-Munk model are posited, and alternate formulas believed less

prone to these pathologies are introduced. Suggestions are offered not only for

R, T, and R0, but also for intermediate or adjunct quantities used in the main

formulas. Computational experiments were performed to verify the new models

produce the same results as the existing ones under non-pathological conditions,

exhibit acceptable levels of precision in a customary floating-point environment,

and are more robust with respect to edge cases where an input quantity is zero.

The new formulas performed well, with some evidence that the new hyperbolic

forms provide better accuracy than their exponential counterparts.
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Symbols and Notation

R Reflectance factor, particularly of a colorant layer in optical contact with a backing

R∞ Reflectivity, i.e., the reflectance factor of a colorant layer so thick that its reflectance factor

is independent of the background

Rg Reflectance factor of the backing or substrate

R0 Reflectance factor of the colorant layer over a perfectly absorbing background (R, when

Rg = 0)

T Transmittance factor (here, of a colorant layer)

X Thickness of the colorant layer

K Coefficient of absorption of the colorant; the proportion of light absorbed in a layer of in-

finitesimal thickness dx will be Kdx.

S Coefficient of scatter of the colorant; the proportion of light scattered in a layer of infinites-

imal thickness dx will be Sdx.

a Used in so-called hyperbolic solutions; a = K+S
S

b Also used in hyperbolic solutions; a2 − b2 = 1, so b =
√
a2 − 1

L =
√
(K + S)2 − S2 =

√
K(K + 2S)

M = K + S

P = L +K + S = L +M

2



Notes

The notation used in this paper follows, wherever possible, that used by Kubelka. [1] L is from

Gurevič. [2] The last two quantities,M and P, are introduced here for convenience.

Other than layer thickness, X, the quantities are dependent on wavelength, and, by the first

law of thermodynamics, [3, p 130] cannot be negative, nor can a be less than one.

The units for layer thickness are customarilymicrometers. However, the author has on occa-

sion used grams per square meter as a convenient surrogate for thickness; it may be translated

into thickness if the mass density of the colorant is known.

The units for K, S, L,M, and P are the reciprocal of the units used for thickness, e.g., recip-

rocal micrometers.

All of the other quantities are dimensionless.

1 Introduction

Kubelka and Munk investigated optical properties of homogeneous layers using a system of

two first-order linear differential equations, one equation each for two fluxes, each traversing

a layer a layer illuminated on one side in two directions: the first away from the illuminated

surface, and the second back toward the illuminated surface.[4]There are several excellent ref-

erences that provide an introduction to Kubelka-Munk theory, includingWyszecki and Stiles,

Judd andWyszecki. Philips-Invernizzi, et al.,[5] provide a thorough literature review with his-

torical and modern context. Berns provides an approachable introduction.

The Kubelka-Munk model has been applied to a wide variety of problems, including col-

orant mixing [6, 7, 8], astrophysics, remote sensing, and color hardcopy. [9]

In this paper, formulas derived from the Kubelka-Munk model (and Gurevič’s [2] nearly

identical model), will be examined to identify, and, hopefully mollify, issues that may arise

during machine computation. The formulas are to compute R, the reflectance factor of a col-
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orant layer atop a background of known reflectance factor; T, the transmittance factor of a

colorant layer; and R0, the reflectance factor of a colorant layer atop a perfectly black backing.

1.1 Computational pathology in formulas for Kubelka-Munk models

There are twomain computational pathologies examined in this paper: computational failures,

and excessive loss of precision.

A computational failure is an error at run time that results in a crash, an exception being

raised (which may result in a crash), or a “Not-A-Number” (NaN) result. The specific com-

putational failures most frequently encountered by the author in work with Kubelka-Munk

models have been:

• attempting to take the hyperbolic cotangent of 0; and

• attempting to divide by 0 or take the reciprocal of 0.

Kubelka clearly stated that the hyperbolic forms were intended for hand computation. Even

when using a calculating machine, the human operating it could quickly detect a fault and

apply an alternate formula; Kubelka provided several of these in his 1948 paper. Anticipating

and catching all fault-inducing situations, and handling them appropriately, is not as simple

when the calculations are performed by a computer program.

A second form of computational pathology is excessive loss of precision. Floating-point

numbers are stored with a finite amount of precision, usually either 24 or 53 bits of binary

precision.These translate into approximately seven and 16 decimal digits of precision, respec-

tively.

Precision is lost nearly every time a floating-point operation is performed. In particular,

a large amount of precision may be lost when two floating point numbers close in value are

subtracted. [10, 11] In Figure 1, two floating-point values in IEEE-724 half-precision are sub-

tracted. In this format, there are 12 digits of binary precision, or approximately 3.6 decimal
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digits of precision. The difference, unfortunately, has only five significant binary digits (ap-

proximately 1.5 significant decimal digits), meaning a loss of seven binary digits, or more than

2 decimal digits.

The seven decimal digits offered by single precision, and even the nearly 16 digits afforded

by double precision, can be quickly eroded by injudicious arithmetic operations. Unlike com-

putational failures, precision loss can nuanced and difficult to detect.

1.2 Problem, goals, and approach

To succinctly state the problem, pathological results, including faults and loss of precision,may

arise when performing calculations using the Kubelka-Munkmodel.These will be particularly

acute with machine computation.

The goals of this paper, with respect to formulas based on the Kubelka-Munk model, are:

• Identify pathological calculations resulting in faults and excessive precision loss.

• Whenmore thanone formula is available, determinewhich is less prone to these patholo-

gies.

• Rule out possible suspected causes of pathology.

• Offer alternate formulas less prone to faults and/or excessive loss of precision.

• In short, establish a nucleus of best practices for machine computation.

The approach may be gleaned from the organization of this paper. In the next section, ex-

isting formulas will be examined for potential causes of pathology. In the following section,

identities that have potential to reduce computational pathologies will be derived. Next, alter-

nate formulaswill be evaluated in customary and high-precision computational environments.

Finally, conclusions and recommendations for best practices will be offered.
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2 Formulas in the prior art

2.1 Formulas for reflectance

2.1.1 Kubelka and Munk, 1931 [4]

R =
(Rg − R∞)/R∞ − R∞(Rg − 1/R∞) exp [SX(1/R∞ − R∞)]

Rg − R∞ − (Rg − 1/R∞) exp [SX(1/R∞ − R∞)]
(1)

This formula contains four different subtractions, and the reciprocal of R∞ appears in several

places. R∞ will approach zero as the colorant approaches perfect transparency (i.e., as S→ 0).

While this may appear rather complicated, there are other ways to express it in less compli-

cated terms. One follows immediately below, three more are offered in a later section of the

paper.

2.1.2 Kubelka, 1948 [1]

Kubelka’s so-called hyperbolic solution,

R =
1 − Rg (a − b ⋅ cothbSX)
a − Rg + b ⋅ cothbSX

, (2)

does appear simpler than Eq (1), and involves two fewer subtractions. Unfortunately, it con-

tains the hyperbolic cotangent, which is singular at zero, as shown in Figure 2. While not a

problem for hand computation, this is best avoided with machine computation. When any of

b, S, or X are zero, an arithmetical error will occur.

2.2 Formulas for transmittance

2.2.1 Gurevič, 1930 [2, p 756]

Kubelka andMunk did not address transmittance in their 1931 paper. Gurevič, in a paper pub-

lished slightly earlier than Kubelka and Munk’s, did provide an expression for transmittance.
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Translating Gurevič’s notation1 to that of the present paper, it was:

T = (1 − R
2
∞) exp (−LX)

1 − R2
∞ exp (−2LX)

(3)

where:

L =
√
(K + S)2 − S2. (4)

In a later section, Lwill be written in amore numerically favorable form, further interpreted

in terms of the Kubelka-Munk framework, and employed in formulas for machine computa-

tion.

2.2.2 Kubelka, 1948 [1]

Kubelka offered a hyperbolic solution for transmittance:

T = b
a sinhbSX + b coshbSX

(5)

This is susceptible to instability if b is small, which it will be for white media. A very small

value of b, S, orX canmake the first term in the denominator effectively vanish throughfloating

point underflow because sinh(0) = 0. Further, because it is a factor in the second term, it can

likewise cause this term to become pathologically small. A singularity will of course result if

both terms in the denominator vanish.

2.3 Formulas for R0

WhileR0 is a special case of reflectance, Kubelka andMunk[4] disclosed the following formula

(their Eq (6)) for R0, the reflectance of a colorant layer over a perfectly black substrate. In the

1Gurevič’s parameters were congruent to Kubelka and Munk’s K + S and S.
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notation used in the present paper, it was:

R0 =
exp[(1/R∞ − R∞)SX] − 1

1/R∞ exp[(1/R∞ − R∞)SX] − R∞
(6)

and may be easily derived from Eq (1) by substituting 0 in it in place of Rg.

Kubelka [1] also offered two related hyperbolic expressions. The first,

R0 =
1

a + b cothbSX
, (7)

is easily obtained from Eq (2); his secondmay be obtained bymultiplying both numerator and

denominator of Eq (7) by sinhbSX:

R0 =
sinhbSX

a sinhbSX + b coshbSX
(7a)

Eq (6) does have the reciprocal of R∞, which is pathological as S → 0. As the lead factor in

the first term of the denominator, it is easily remedied. The instances in the two exponentials,

however, will not yield to this simple expedient.

The pathology of Eq (7) is identical to that of the hyperbolic form for reflectance given in

Eq (2). Inasmuch as their denominators are identical, the potential pathologies of Eq (5) and

Eq (7a) are likewise the same.

3 Remediation of pathologies

Kubelka [1] discussed several approximate formulas for R, T, R0, and related quantities. While

performinghand-computation, certain edge cases thatmight cause problems could be avoided,

and the calculation could be simplified. Kubelka’s Table III, and the text that introduces it, el-

egantly address several special cases through 28 simplified formulas.
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For machine computation, the general case/special case approach championed and enabled

by Kubelka may not be the best strategy. First, very specific boundaries between the general

case and each of the special cases are required. Logic and branching to handle the special cases

complicate coding and will require a much larger testing and debugging effort. Further, with

machine computation, discontinuities and other inconsistencies as calculation switches be-

tween general case and one of the special cases are undesirable, and, hopefullymay be avoided.

Enabling robust computation using general-case formulas for all cases, eliminating the need

to identify, code, and test edge cases, is the goal of this paper.

3.1 Enabling lemmatic foundations

In the following section, strategies for more robust machine computation of R, T, and R0 un-

der the Kubelka-Munk model will be derived and discussed, using some enabling lemmas

presented here.

Recall Gurevič’s L (Eq (4)); we avoid a subtraction if we write instead:

L =
√
K(K + 2S)

S
.

Two convenient forms for R∞ are worth knowing:

R∞ = a − b =
1

a + b
.

By definition, a = (K + S) ÷ S, and b =
√
a2 − 1. Another way to represent b appears several

times in the literature, and is easily derived from these two definitions:

b =
√

K
S
(2 + K

S
)
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This may be further simplified to:

b =
√
K(K + 2S)

S
= L
S

Therefore, an equivalent representation for the germ of some pathology discussed earlier is:

bS = L,

While this identity applies regardless of the value of S, there is a limit of interest:

lim
S→0

bSX = KX.

(A side note: As scattering vanishes, the argument to the transcendental functions in many of

the formulas in Kubelka-Munk theory approaches the product KX.The absorption coefficient,

K, plays a similar role here to the extinction coefficient, ε, in the Bouguer-Lambert-Beer [12,

13, 14] cannon, where it multiplies the concentration and path length to form the argument

to the exponential function.)

Another useful representation of b is:

b = 1
2
( 1
R∞
− R∞)

whence:
1
R∞
− R∞ = 2b
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3.1.1 Preferred forms for R∞ and related quantities

To avoid cancellation of precision caused by subtraction, the following formulas are recom-

mended:

R∞ =
S

L +M
= S
P

(8)

1 − R∞ =
K + L
L +M

= K + L
P

(9)

where P = L +M = K + S + L.

Gurevič’s formula for transmittance contains the factor 1 − R2
∞. This may be factored into

(1 + R∞)(1 − R∞), which may be written:

1 − R2
∞ =
(P + S)(K + L)

P2 (10)

4 Revised formulas

It should be noted that the following formulas are mathematically equivalent to the corre-

sponding formula appearing above, and produce identical results under non-pathological con-

ditions, as will be shown in the following section. The equation numbers in the following re-

vised formulas are based on the number of the corresponding equation from earlier, with a

“-R” (and possibly an additional letter where two or more alternatives are offered).
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4.1 Alternate formulas for R

4.1.1 Exponential form

Making substitutions using identities derived in the previous section, Kubelka and Munk’s

1931 formula for reflectance may be cast as:

R =
P (PRg − S) + S(P − SRg) exp(2LX)
S (PRg − S) + P(P − SRg) exp(2LX)

Note that the following term is repeated (for convenience, associated here with the symbol α):

α = (P − SRg) exp (2LX)

The revised formula may now be written:

R =
P (PRg − S) + Sα
S (PRg − S) + Pα

(1-R)

Discussion. This last form appears to reduce the occasion of the pitfalls identified, namely,

loss of floating-point precision and/or floating-point failure as X → 0, R∞ → 0, and either

S → 0 or K → 0. This form has just two distinct subtractions, vis-à-vis the four required in Eq

(1), and, in contrast to the hyperbolic form, no issues as X→ 0.

Also, note that for perfect transparency, with K > S = 0, R∞ = 0, L = K, and P = 2K,

so the numerator will equal 4K2Rg, while the denominator will be 4K2 exp (2KX), yielding

R = Rg exp (−2KX), which is in direct concordance with the Bouguer-Lambert-Beer model.

Aside from the two subtractions, one pathology remains, for K = 0. Then, L = 0, P = S,

α = S(1 − Rg), and the denominator becomes zero.
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4.1.2 Hyperbolic forms

Two alternatives that avoid the issues with the hyperbolic cotangent, but nevertheless employ

hyperbolic functions, are:

R =
L ⋅ Rg + (S −M ⋅ Rg) tanhLX
L + (M − S ⋅ Rg) tanhLX

, (2-R)

and

R =
L ⋅ Rg coshLX + (S −M ⋅ Rg) sinhLX
L ⋅ coshLX + (M − S ⋅ Rg) sinhLX

. (2-Ra)

These are both less susceptible to numerical pathology as X → 0, and contain one fewer

subtraction than the original hyperbolic form in Eq (2), in addition to the implicit subtraction

eliminated by no longer using the quantity b.

4.2 Formulas for T

4.2.1 Revision of Gurevič’s formula for transmittance

A subtraction is eliminated by using the preferred form of 1 − R∞, factoring 1 − R2
∞, and :

T = (P + S)(K + L) exp (−LX)
P2 − S2 exp (−2LX)

(3-R)

When the input is K, S, and X, only one subtraction is used, and appears to be stable except

when K = 0, resulting in a 0/0 indeterminate form.

4.2.2 Hyperbolic form

Making the substitution L = bS in Eq (5), and multiplying numerator and denominator by S,

one obtains:

T = L
M sinhLX + L coshLX

(5-R)
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Other than the division by two and subtraction implicit in both hyperbolic functions, only one

division, and no subtractions are employed by this form.The denominator will vanish only as

both K and S do so.

4.3 Formulas for R0

4.3.1 Revised exponential form

R0 =
SP [exp (2LX) − 1]
P2 exp (2LX) − S2

. (6-R)

4.3.2 Revised hyperbolic forms

R0 =
S tanhLX

L +M tanhLX
, (7-R)

R0 =
S sinhLX

M sinhLX + L coshLX
(7a-R)

5 Experimental

Computational experiments were performed to assess agreement among the formulas, evalu-

ate precision under customary floating-point conditions, and check behavior under extreme

cases.

5.1 Part 1: Verification

In order to verify that the revised formulas produce the same results as the prior forms under

most conditions (i.e., other thanK = 0 or X = 0), the original and revised formulas were coded

in the C++ programming language. In order to rule out all but the smallest rounding errors

as cause for any discrepancy, special arithmetic was employed. The GNUMPFR package [15]
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was used, providing over 1600 binary digits (at least 500 decimal digits) of precision.TheBoost

Multiprecision wrapper [16] provided a convenient interface for the MPFR capabilities.

Details of the testing platform appear in Table 1.

Fifty thousand random combinations of K, S, X, and Rg were generated using the default

random number generator in the GNU g++ environment on a GNU/Linux workstation. The

random number generator was initialized with a constant seed to ensure consistent results

from one run to the next.The distributions of all four variables were uniform, withK, S, and X

uniformly distributed on [0, 2.5], while Rg was drawn from a uniform distribution on [0, 1].

The values generated by each combination of the two existing and three new reflectance for-

mulas, two existing and two new transmittance formulas, and three existing and three new

formulas were compared on a pairwise basis.

For reflectance, the formulas compared were those in Equations (1), (2), (1-R), (2-R), and

(2a-R). The transmittance formulas compared were those in Equations (3), (5), (3-R), and (5-

R). Finally, the formulas for R0 compared were given in Equations (6), (7), (7a), (6-R), (7-R),

and (7a-R).

The maximum absolute difference for each pair appear in Table 2. For example, the re-

flectances calculated using the five formulas identified in the previous paragraph differed from

each other by no more than 1.207 × 10−499 when calculated in a floating-point environment

with 500 decimal digits of precision. With maximum differences on the order of the floating-

point epsilon, there is assurance that the old and new formulas produce, in essence, identical

results under non-pathogenic conditions.

5.2 Part 2: Evaluation of floating-point results

The same models were exercised, using the same combinations of K, S, X, and Rg, but with the

computations performed in double precision (53 bits of binary precision) as well. This envi-

ronment represents practical computation conditions. Rather than the disagreement between
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the formulas, the maximum absolute value by which the customary precision calculations dif-

fer from the high-precision counterparts were computed. In earlier experiment it was shown

that the formulas for each mode agree, so, for each set of input values (K, S, X, and, for re-

flectance, Rg) the high-precision answers were averaged and regarded as the true value for that

input set. The absolute value of the difference between this “truth” and an answer computed

using the customary precision level was taken as an error. The maximum errors for the 50000

trials appear in Table 3.

These results show agreement more than adequate for practical calculations, and are con-

sistent with small floating point errors.

5.3 Part 3: Evaluation under pathogenic conditions

An additional run was made with K = 0, another with S = 0, and a third with X = 0. A fourth

was made for reflectance with Rg = 0.

As anticipated, all formulas generated a not a number result with K = 0.The complete set of

results appear in Table 4.

5.4 Discussion

In spite of the author’s predictions, the existing formulas performed very well, except when

K = 0 (for which all formulas failed), and other pathogenic conditions. The new formulas

produced results that were reasonable for all other pathogenic conditions, as shown in Table 4,

and agreement between high and customary precision, as shown in Table 3 provide assurance

that their answers are essentially correct.

The results shown in Table 3 indicate that the hyperbolic formulas have an edge over the

exponential forms, particularly for R0.
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6 Conclusions

In general, the new formulas performed as well as their existing counterparts. The revised

exponential forms showed only slighter worse accuracy, while the hyperbolic forms showed

slighter better accuracy.

Those starting new projects should consider adopting the new formulas, in particular, those

using hyperbolic functions, as well as improved formulas for bS,R∞, and other adjunct quanti-

ties. Even those that wish to continue to use the existing formulas can profit fromnew formulas

for adjunct quantities, with fewer subtractions and denominators less likely to vanish. How-

ever, with the new formulas producing fewer “Not-a-Number” results under the pathogenic

conditions, it may be worthwhile to at least consider including them in existing projects.

The quantity K + S, calledM in this paper, plays a similar role to a in hyperbolic solutions.

Likewise, L is an analog to b. This is not surprising, because a =M ÷ S, and b = L ÷ S.

TheBouguer-Lambert-Beermodelmay bemore easily understood as a special case ofKubelka-

Munk, because forms introduced here more easily handle vanishing scatter and segue grace-

fully to formulas based on Bouguer-Lambert-Beer.
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12 significant binary digits in;

1.00001110001 × 24
– 1.00001010010 × 24
0.00000011111 × 24

= 1.11110000000 × 2-3
5 significant binary digits out

Figure 1: Example of loss of precision.
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Table 1: Details of testing platform.
Manufacturer Lenovo
Model 20KH002FUS
Processor Intel Core i7-8650U, 4.20 GHz
Topology 1 Processor, 4 Cores, 8 Threads
Memory 15.4 GB
Operating System x86_64 GNU/Linux, kernel 5.8.0
Compiler GNU g++, version 9.3.0
Customary precision g++ C++ double (IEEE 754 float64)
High precision GNUMPFR, version 4.0.2, 500 decimal digits
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Table 2: Comparison of formulas, high precision

Quantity Maximum Difference

R 1.207 × 10−499

T 1.6582 × 10−499

R0 9.3836 × 10−500

Maximum formula-to-formula difference for 50000 random combinations of K, S, X, and Rg,
computed in a floating-point environment providing at least 500 decimal digits of precision.
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Table 4: Results using pathological input.

Input Table 4a: Formulas for R
K S X Rg Eq (1) Eq (2) Eq (1-R) Eq (2-R) Eq (2-Ra)

0 1 1 0.85 nan nan nan nan nan

1 0 1 0.85 nan nan 0.11503 0.11503 0.11503

1 1 0 0.85 0.8500 nan 0.8500 0.8500 0.8500

1 1 1 0.00 0.26015 0.26015 0.26015 0.26015 0.26015

Input Table 4b: Formulas for T
K S X Eq (3) Eq (5) Eq (3-R) Eq (5-R)

0 1 1 nan nan nan nan

1 0 1 nan nan 0.36788 0.36788

1 1 0 1 1 1 1

Input Table 4c: Formulas for R0

K S X Eq (6) Eq (7) Eq (7a) Eq (6-R) Eq (7-R) Eq (7a-R)

0 1 1 nan nan nan nan nan nan

1 0 1 nan nan nan 0 0 0

1 1 0 0 0 0 0 0 0

Equation numbers containing “-R” are revisions introduced in this paper.
“nan” is “not-a-number” resulting from division by zero or similar error.
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